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Resumen
La investigación sobre el endotelio vascular en los últimos 40 años ha provisto ideas para entender la enfermedad vascular. Este nuevo 
conocimiento ha encontrado su camino en la medicina clínica. En esta revisión nos ocupamos de ciertas áreas de la investigación en 
las que se ha obtenido avances significativos en la prevención y el tratamiento cardiovascular, así como algunas interrogantes que 
aún permanecen sin respuesta.
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Abstract
Over the last 40 years, research on the vascular endothelium has provided important clues for the understanding of vascular disease. 
This new knowledge is finding its way into clinical medicine. In this review we deal with some areas where significant advances in the 
prevention and treatment of cardiovascular research has been achieved and with some of the remaining questions.
Keywords: Vascular endothelium, vascular disease, cardiovascular research.
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El endotelio vascular
The vascular endothelium

The vascular endothelium, the in-
nermost layer of blood and lymphatic 
vessels, covers the whole surface of 
the vascular system and provides the 
interface between circulating blood or 
lymph and the vessel wall. It is one cell 
thick and, following its discovery in the 
19th century, it was long believed to be 
an inert layer that merely facilitated 
the circulation of fluids around the 
body. It was Florey who, while descri-
bing his early pioneering work on the 
ultrastructure of the vascular endothe-
lial cell, predicted that important dis-
coveries could be made when pursuing 
the study of these cells despite the fact 
that the endothelium had until then 
been considered to be just a kind of ce-
llophane wrapping (1). He was right. 

In the last 40 years, research on the 
vascular endothelium has been very 
productive and its results have greatly 
contributed to our understanding of 
the normal functioning of the vascu-
lature as well as providing important 
clues for unraveling the mystery of car-
diovascular disease, its origin, develop-
ment, complications and its prevention 

or treatment. The endothelium is now 
considered to be an organ with signifi-
cant physiological roles rather than an 
inert surface. Figure 1 shows the num-
ber of publications on this subject over 
the last four decades as well as some key 
discoveries that have directly contribu-
ted to the developing interest in the 
vascular endothelium. These include 
the discovery of the vasodilator pros-
tacyclin, that of endothelium-derived 
relaxing factor and its identification as 
nitric oxide (NO). The author has des-
cribed elsewhere his own contribution 
to this research (10).

The purpose of this brief review is to 
revisit some areas in which research is 
at present generating significant new 
information or where translation into 
clinical medicine is taking place. These 
include the significance of the balance 
between prostacyclin and thromboxa-
ne A2 for vascular homeostasis, the po-
tential use of aspirin and related com-
pounds in the prevention of cancer, 
endothelial dysfunction and the use of 
prostacyclin as a drug for the manage-
ment of pulmonary hypertension. 

The unexpected finding of the va-
sodilator prostacyclin while we were 
looking for the vasoconstrictor throm-
boxane A2 in the vascular wall (10) re-
vealed that two compounds with oppo-
sing biological functions, derived from 
the same precursor (arachidonic acid), 
are synthesized by cyclooxygenase en-
zymes in the platelets and the vascular 
wall. This led us to the hypothesis that 
a balance exists between the generation 
of these two compounds (thromboxane 
A2 from the platelets and prostacyclin 
from the vessel wall) and that this is 
not only important for the understan-
ding of the homeostasis of platelet-
vessel wall interactions, but also for the 
understanding of disease. A closely-re-
lated question concerns the net effect 
achieved in the vasculature following 
treatment with aspirin and aspirin-like 
drugs, which have the ability to inhibit 
the synthesis of both prostacyclin and 
thromboxane A2. This has proven to 
be an enduring question, the answer to 
which is only becoming clear in the last 
few years. 
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The unique action of aspirin was 
unraveled in the late 1970s when it 
was demonstrated that the platelet cy-
clooxygenase, unlike that of the vessel 
wall, is exquisitely sensitive to aspirin 
and that the acetylation by aspirin of a 
serine residue at the active site of the 
enzyme is irreversible and lasts for the 
duration of the life of the platelets (11-13) 
which are unable to synthesize new 
proteins. This, together with the de-
monstration that a small dose of aspirin 
is more effective than a large dose in 
increasing cutaneous bleeding time in 
humans (14), led to the understanding 
of the now well-recognized protective 
effect of low doses of aspirin against 
vascular disease. This protective effect 
has been demonstrated in a large num-
ber of clinical trials in different cardio-
vascular conditions (15,16). The work on 
aspirin lent support to the hypothesis of 
the significance of the balance between 
prostacyclin and thromboxane A2, sin-
ce what a low dose of aspirin achieves 
by selectively inhibiting generation of 
thromboxane A2 is to shift the balance 
in favor of prostacyclin.

Further support for the hypothesis 
came from an unexpected source. In 
the 1990s it was discovered that cy-
clooxygenase exists in two forms, one 
constitutive (called COX1) which ge-
nerates prostaglandins for physiologi-
cal functions, and a second, inducible 
form (called COX2) which is expres-
sed during pathological conditions 
and generates prostaglandins involved 
in inflammation (17). Each enzyme is 
encoded by a different gene and their 
molecular structure is sufficiently diffe-
rent to warrant the pursuit of selective 
inhibitors of the COX2 enzyme. It was 
believed that these types of compounds 
would possess anti-inflammatory acti-
vity without the side effects (particu-
larly gastric side effects) that bedevil 
the classical non-steroidal anti-inflam-
matory drugs (NSAIDS). In the event, 
such compounds were synthesized and 
the objective of achieving similar anti-
inflammatory activity to the traditional 
aspirin-like drugs with reduced gastric 
side effects was achieved (18,19). Howe-
ver, during the development of these 
compounds a potential problem was 

identified (20-22) which was later con-
firmed in patients, namely that COX2 
inhibitors increase the risk of cardio-
vascular events (18,19). Studies indicated 
that this serious side effect was due to 
inhibition of the generation of prosta-
cyclin in the vasculature, leading to an 
increase in blood pressure and thus to 
a pro-thrombotic state. Over the last 
few years animal experiments (23,24) 
and clinical studies have produced 
overwhelming evidence in support of 
this suggestion, confirming that this is 
not a side effect related to any speci-
fic molecule but is associated with the 
pharmacological action of the whole 
class of compounds and is dependent 
on the strength and duration of inhibi-
tion of the synthesis of prostacyclin (19). 
Fittingly, a concomitant inhibition of 
COX1 with low-dose aspirin protects 
against this side effect through inhibi-
tion of the generation of thromboxane 
A2 

(23,25).

Two problems remain to be fully cla-
rified, the first of which is whether the 
generation of prostacyclin in the vas-
culature is due to an inducible COX2 
resulting from a subliminal inflamma-
tory condition of the vasculature, or is 
due to a constitutive enzyme. There is 
a body of evidence in favor of the lat-
ter (19). However, recent evidence indi-
cates that it may be a mixture of the 
two enzymes (26,27), a fact that would 
be in agreement with the early obser-
vation that the concentration of 6-oxo 
PGF1α, the stable end product of the 
metabolism of prostacyclin, is elevated 
in patients with atherosclerosis (28).

 If that is correct, then COX2 ove-
rexpression would be part of an inflam-
matory condition and thus a defensive 
mechanism. The second problem rela-
tes to the question of whether classical 
NSAIDs also carry the risk of cardiovas-
cular side effects. This remains a highly 
controversial issue which may be resol-
ved in further clinical trials. However, it 
is reasonable to assume that the cardio-
vascular risk of these drugs will be asso-
ciated with the degree and duration of 
inhibition of COX2 and that the ratio 
between COX1 and COX2 will be de-

Figura 1. Some key publications in the field of vascular endothelium research and number of 
publications in the field over time (2-9).
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terminant in their relative tendency to 
cause this side effect (29,30). Indeed, the 
use of diclofenac (which has a ratio of 
COX1:COX2 inhibition similar to that 
of the COX2 inhibitor celebrex) is as-
sociated with increased cardiovascular 
risk, while the use of naproxen (which 
is a more selective COX1 inhibitor) is 
not (31).The data on ibuprofen, which is 
also a more selective COX1 inhibitor, 
remains controversial (32). In summary, 
the concept of the balance between 
prostacyclin and thromboxane A2 in 
the homeostasis of the vascular system 
has been validated and its relevance in 
health and disease is now well unders-
tood and is guiding further develop-
ment of therapies. Recently, however, a 
genetic variant of the gene responsible 
for the encoding of COX2 (PTGS2), 
associated with lower COX2 activity, 
has been identified in humans. The re-
lationship between this condition and 
cardiovascular risk has so far proven 
to be controversial (33-36). One of the 
reasons for this may be that this gene-
tic variant, although associated with a 
decrease in excretion of 6-oxo PGF1α, 
seems also to be associated with decrea-
sed concentrations of thromboxane A2; 
this complicates interpretation of the 
results using the prostacyclin/throm-
boxane A2 balance hypothesis.

One of the most exciting discoveries 
in the use of NSAIDS has been the 
finding that these compounds prevent 
the development of different forms of 
cancer. This effect, which was identi-
fied some years ago in large prospective 
clinical trials (37,38), was later attributed 
to the inhibition of prostaglandin syn-
thesis, specifically that of prostaglan-
din E2 (PGE2), generated by a COX2 
enzyme induced by inflammation asso-
ciated with pre-malignant lesions (39). 
This prostaglandin was believed to be 
responsible, at least in part, for the neo-
plastic transformation through its acti-
vation of pro-survival pathways (40-43). 
This led to the testing of COX2 inhi-
bitors in the chemoprevention of co-
lorectal cancers, in which a protective 
action was demonstrated. These trials 
were, however, marred by concerns 

related to the potential cardiovascular 
side-effects of these drugs, which ham-
pered their full evaluation (44). Studies 
which demonstrated that the enzyme 
converting PGH2 to PGE2, the so-
called microsomal prostaglandin E syn-
thase-1 (mPGE-1), is overexpressed in 
inflammation and couples with COX2 
to enhance PGE2 generation. This has 
led more recently to the suggestion that 
selective inhibitors of this enzyme may 
be an important therapeutic target that 
will result in selective inhibition of the 
pathological PGE2, allowing PGH2 to 
be converted into the physiologically 
active prostaglandin, prostacyclin (45,46). 
Overexpression of mPGE-1 has been 
shown in different forms of cancers and 
its presence is significantly correlated 
with a worse prognosis, at least in co-
lorectal cancers (47,48). Although animal 
studies in which deletion of this enzyme 
has been carried out show controversial 
results in relation to cancer (49,50), the 
development and early in vitro testing 
of selective inhibitors of this enzyme is 
proceeding (51.52), and clinical trials are 
likely to clarify before long the viability 
of this hypothesis. 

The origin of the inflammatory 
reaction in premalignant lesions has 
been linked to platelet activation. 
Evidence for this originally came from 
the long- term follow-up clinical trials 
mentioned above in which the efficacy 
of aspirin as an antithrombotic agent 
was investigated (53-55). It was noticed 
that ingestion of aspirin, even at the low 
doses used to protect against arterial 
thrombosis, reduced the incidence of 
mortality due to cancer, particularly 
of those of the gastrointestinal tract. 
These results pointed to the platelets as 
a culprit (55) − a suspicion that has been 
strengthened by several observations 
including the fact that aggregating 
platelets can produce inflammation 
and induction of COX2 (56,57), and that 
the doses of aspirin that are protective 
do not reach plasma concentrations 
sufficiently high to inhibit COX2 and 
are therefore likely to be inhibiting the 
platelet COX1 (52,58). If these results 
are correct, they point towards a key 

role of platelet activation not only 
in atherosclerosis and thrombosis, 
where their role is now fully accepted, 
but also in the process of neoplastic 
transformation. Both effects take place 
via a two-step process which involves 
the activation of a COX1 and other 
pathways in the platelets, followed by 
the induction of COX2 in a number of 
cells participating in the development 
of the atherosclerotic plaque or the 
tumor.

As far as prevention or antineoplas-
tic therapy is concerned, low-dose aspi-
rin therefore emerges as a particularly 
attractive option for antithrombotic 
and antitumor therapy, clearly superior 
to the more selective COX2 inhibi-
tors which possess cardiovascular side 
effects and also superior to the classical 
NSAIDS, none of which shares with 
aspirin its unique selectivity of inhibi-
tion of the platelet COX1 enzyme. 

Although the idea of a dysfunctional 
vascular endothelium was mooted many 
years ago (59), only in the last 20 years 
has it become one of the most studied 
areas of vascular biology. Indeed, early 
detection of ‘endothelial dysfunction’ is 
proving to be predictive of cardiovas-
cular disease and may indicate ways of 
preventing its development. Endothe-
lial dysfunction occurs in a number of 
conditions including hypertension, dia-
betes (types 1 and 2), coronary artery 
disease and chronic renal failure (60). 
It has been equated with a decrease in 
generation of NO by the vascular en-
dothelium and it is likely that this may 
indeed be its major pathophysiological 
cause. However, more recently, a num-
ber of other changes have been identi-
fied which indicate that, besides a de-
crease in availability of NO, endothelial 
dysfunction also comprises an increase 
in vasoconstrictor, pro-inflammatory 
and pro-thrombotic parameters (60).

The decrease in activity of NO has 
been attributed largely to a decrease 
in its availability resulting from the 
interaction with oxygen-derived spe-
cies, mainly superoxide anion (61,62), 
which may be generated by a number 



336

An Fac med. 2014;75(4):333-8

of enzymes including NADPH oxidase, 
xanthine oxidase, uncoupling of NO 
synthase or from the mitochondrial 
oxidative phosphorylation chain (63-65). 

More recently, it has been sugges-
ted that increases in the concentra-
tion of asymmetric dimethylarginine 
(ADMA) may be involved in endothe-
lial dysfunction. This compound was 
discovered some years ago to be an en-
dogenous inhibitor of the NO synthase 
and shown to be increased in patients 
with renal insufficiency (66). Since then, 
evidence in favor of its role in endothe-
lial dysfunction and in cardiovascular 
disease has been mounting. Indeed, 
an increase in plasma concentration of 
ADMA is associated with hypercho-
lesterolemia (67), and with increased 
cardiovascular risk factors in patients 
with renal failure (68). Furthermore it is 
predictive of acute coronary events (69), 
overall mortality of patients with chro-
nic renal failure (70), and mortality in 
critically ill patients (71). Two indepen-
dent pieces of evidence have added 
support to the suggestion that ADMA 
plays a role in vascular disease. First, 
it has been shown that in some forms 
of vascular pathology the intracellular 
concentration of ADMA is elevated 
3 to 9-fold over physiological concen-
trations; these concentrations, unlike 
physiological concentrations, are suffi-
cient to inhibit NO synthase, indica-
ting that endogenous inhibitors of NO 
synthesis are critical factors in vascular 
dysfunction following injury (72). Secon-
dly, a genetic mutation has been iden-
tified in the enzyme dimethylarginine 
dimethylaminohydrolase (DDAH, the 
enzyme responsible for the metabolism 
of ADMA) in some individuals with a 
susceptibility to pre-eclampsia (73). In 
summary, although a great deal of evi-
dence has been generated supporting 
the concept of endothelial dysfunction, 
much work is still required to clarify fu-
lly the pathophysiological mechanisms 
involved in this early manifestation of 
vascular disease. It will be important to 
establish whether, and to what extent, 
early intervention has a significant 
effect on the development of vascular 
disease.

Although the powerful vasodilator 
and antiplatelet effect of prostacyclin 
suggested early on its potential use 
in clinical conditions associated with 
thrombosis and vasoconstriction (74), its 
main clinical use at present is in the ma-
nagement of primary pulmonary hyper-
tension (75,76), where it has been shown 
to improve symptoms, induce remode-
ling of the pulmonary vasculature and 
reduce mortality. The difficulties rela-
ted to its intravenous usage as an uns-
table compound, requiring continuous 
administration, led to the development 
of different formulations of prostacyclin 
or its analogs for intravenous, subcuta-
neous and inhaled administration (75,76). 
In addition to the use of these com-
pounds, two different approaches have 
also proven to be useful in the manage-
ment of primary pulmonary hyperten-
sion. These are the use of endothelin 
receptor antagonists and inhibitors of 
the enzyme 5-phosphodiesterase to 
boost the effect of endogenous NO on 
its receptor, the soluble guanylyl cycla-
se. These compounds, used alone or in 
different combinations and schedules, 
have revolutionized the treatment of 
this complex and fatal disease to the 
point that the long-term management 
with orally-active compounds is now 
being investigated and prostacyclin 
and nitric oxide receptor agonists are 
at present the subject of long-term cli-
nical trials (76-80). Furthermore, the pro-
liferative nature of the disease, at least 
in part associated with the release of 
platelet-derived growth factor, has led 
to the development and use of different 
kinase inhibitors (79). 

In summary, research on the vascu-
lar endothelium and in closely-related 
areas continues to generate a great deal 
of interest. As this work matures, trans-
lational developments into medicine 
are becoming prominent, and clear cli-
nical benefits are being demonstrated. 
Almost half a century after Florey, it is 
still possible to predict that the endo-
thelial cell has many secrets yet to be 
uncovered and that, when this occurs, 
further avenues for the prevention and 
treatment of disease will be identified.
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