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Abstract 

A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia 

Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the 

literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with 

different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network 

to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on 

genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was 

obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the 

design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through 

artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods. 
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1. Introduction 
 

1.1. Influence of Artificial Intelligence on the design of an 

agave leaf shredder 

From the end of the 19th century to the beginning of the 

20th century, shredding machines have been developed, 

and the mechanical properties of fibers have been 

determined (Mendoza & Mendoza, 2017; Hidalgo-Reyes 

et al., 2015). Yet, these machines have been designed and 

constructed to shred leaves of species other than Agave 

angustifolia Haw., particularly those of greater economic 

interest such as Agave sisalana and Agave fourcoides 

(Murali & Morchhale, 2014; Kumar et al., 2022). The 

process of shredding A. angustifolia leaves is a task that is 

carried out traditionally using the so-called enriado 

method (Campaña et al., 2020). Despite advances in the 

construction of agave leaf shredder prototypes, the 

cutting elements design parameters to carry out the 

shredding continue to be established empirically and are 

usually based on previous prototypes (Pérez del Río et al., 

2013). Selecting optimal parameters for the design of a 

leaf shredder regarding its structure and functioning (Leal-

Iga et al., 2021) is a difficult task that could improve if new 

artificial intelligence technologies are implemented. 

Genetic Algorithms (GAs) are adaptable search algorithms 

that depend on evolutionary algorithms, which generate 

high-quality solutions for complex engineering and 

optimization problems (Aydin et al., 2020). GAs are often 

used as research tools in scientific model processes, 

providing accurate identification and formulation of the 

objective function (Mirjalili, 2019). The formulation, 

discussion and generalization of GAs for multi-objective 
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optimization were described according to Na et al. (2013), 

where a rank-based fitness assignment method for 

Multiple Objective Genetic Algorithms (MOGAs) is used 

for placement and adjusting the tenant data. The main 

advantage of MOGAs is their versatile ability to add 

different constraints and objectives. It also allows the user 

to choose between a set of solutions, all with the same 

level of acceptance for the GAs but with different 

properties that enable them to decide which one to select 

according to the system of interest requirements 

(Suksonghong et al., 2014). Quaglio et al. (2020) suggest 

using analytical and experimental models for the 

optimization of design parameters; but, it is very 

complicated to deal with on some occasions since 

determining the optimal design parameter values can 

need a large number of material resources and 

considerable calculations and analysis, as well as time for 

experimentation, for two reasons: 1) the number of 

combinations can be very high, and 2) the objective 

function cannot usually be obtained as a function of the 

input parameters. Artificial Neural Networks (ANNs) 

currently allow for modeling and solving complex 

problems with greater ease and less expense in a shorter 

time (Li et al., 2020). 
 

1.2. Artificial Intelligence applied in Engineering 

A machinery design problem should have two main 

elements: the number of characteristics or mechanical 

components and the precision of the process to be 

performed. Although many design optimization problems 

involve complex tasks and lack information to resolve 

them, thus, a «pragmatic» approach is required in the 

search for the best or better solutions. In this regard, using 

evolutionary meta-heuristic algorithms that imitate the 

mechanisms of evolution in nature could be implemented, 

which have been used to solve multi-objective 

optimization problems and have been applied to 

engineering practice (Liu et al., 2021). Previous studies 

show that Artificial Intelligence has yielded satisfactory 

results in various engineering applications. This research 

proposes a hybrid method, combining a Neural Network 

as an objective function, capable of modeling the 

relationship of design variables with product quality 

parameters, in this case, fiber, and a GA that optimizes 

those variables. This combination has been used in the 

engineering field with very satisfactory results; for 

example, in the construction sector, as in Vajdian et al. 

(2020) where the shear capacity of panel zone in steel 

columns is determined, and the authors demonstrated 

that the optimization algorithm is robust through the 

output function. Similarly, Feng & Li (2013) applied a back-

propagation network model incorporating GAs that was 

more efficient and accurate in the estimation of 

construction costs than only the back-propagation 

network model. In Ehsani & Dalir (2019) they optimized the 

design process of an angle grid structure using ANN and 

GA, where the trained ANN was used to achieve a precise 

and effective approximation of the buckling load. Sebaaly 

et al. (2018) used a combination of GA and neural 

networks to automate an asphalt mix design process with 

the ability to predict and optimize its constituents, subject 

to a couple of constraints, to get the desired mix 

properties and provide its durability without making 

laboratory tests. ANNs and GAs can be used as simulation 

and optimization tools in other engineering areas. So, in 

Boutemedjet et al. (2019) the wing planform parameters 

of a mini unmanned aerial vehicle (UAV) were determined 

through an optimization hybrid method to perform the 

aerodynamic design procedure for aerial reconnaissance 

at low altitude and low Reynolds number. In Vishwanathan 

(2019) a design of a multicylinder internal combustion 

engine crankshaft was developed by optimizing four 

design parameters to accommodate the wear and tear of 

the crankshaft due to the gearing action and so convert 

the engine unnecessary/extra torque into vehicle speed. 

In the same way, a numerical study for test crash 

worthiness capability of designed multi-cell structures was 

conducted through a technique of combined neural 

networks and genetic algorithm ANNs-GA (Pirmo-

hammad & Esmaeili Marzdashti, 2018), to optimize cross-

sectional shapes used to absorb impact energy, where the 

objective functions were obtained from the constructed 

neural networks to find the non-linear equations of crash 

worthiness indicators regarding the design variables. Also, 

the main parameters of the energy absorption behavior 

of steel thin-walled structures with rectangular cross-

sections, under the quasi-static loading, were modeled 

using an ANN and a response surface method, also with 

these numerical data a systematic crash worthiness study 

was carried out with a multi-objective optimization design 

using GA (Dadrasi et al., 2020). Optimization of composite 

angle grid plates under different loads shows that ANNs 

and GAs reduce computational costs with great accuracy 

and can help to choose the maximum buckling load at the 

minimum structural weight (Ehsani & Dalir, 2019). In Wang 

et al. (2021), through a hybrid model, combining GA and 

ANNs, the authors confirm the relationship between the 

laser-induced welding parameters (fusion width, energy 

density, laser-arc coupling point and welding penetration) 

and the welding joints geometry to determine the energy 

transfer and track in real-time the process quality. As in 

Khezri et al. (2020), ANNs and GAs are considered among 

the most modern tools used to estimate and maximize the 

wax production rate in a Steady-State Gas-to-Liquids 

(GTL) Plant.  

Although there are different optimization methods such 

as Bio-inspired Algorithms or Differential Evolution 

Algorithms included in Evolutionary Algorithms, which are 

efficient in solving different optimal control issues present 

in various engineering areas (Annisa et al., 2018), the main 

aim of this research was to develop a hybrid model based 

on an artificial neural network and a genetic algorithm that 

allows establishing the relationship between the shredding 

process quality and the optimal design parameters 

selection of an Agave angustifolia Haw leaf shredder, 

through numerical methods, based on technological 

power, hardware, as well as the versatility of the 

calculation, software. According to the above, the 

machine's constructive features will be modeled using 

these innovative design tools through the hybrid 

algorithm. This will allow a combination of experimental 

and numerical computing methods to solve an 

optimization problem that was previously complicated. 
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2. Materials and methods 
 

The material used in these experiments was fifty Agave 

angustifolia Haw. leaves, which were collected manually 

and selected completely at random in an agave crop with 

an average age of 8 years. Then, their length, width, 

thickness and weight were measured. 

The dimensions that characterize the leaf were measured; 

length was determined using a 5M Milwaukee magnetic 

tape measure (No. 48-22-7716); thickness was determined 

with a 300 mm Mitutoyo digital calibrator (No. 500-193) 

with 0.01 mm accuracy; leaf mass was determined using a 

Vinson Vins-20 grain-scale with a maximum capacity of 20 

kg and 0.001 kg accuracy. Besides, to determine the feed 

rate of the leaves into the machine, their input and output 

times were measured using a digital stopwatch with 0.01 s 

accuracy. 

To cut the spine from the leave tip, Barrilito (12”) stainless 

steel scissors were used. Finally, a mark was drawn on the 

leaf to state the cutting length (1 m) using a Sharpie black 

permanent marker. 

 

2.1 Leaf characteristics 

Figure 1 shows the schematic of an Agave angustifolia 

Haw. leaf, depicting the variables that characterize them 

by their dimensions, where, Tl is the length of the spine at 

the leaf tip, which is dark brown and flattened above the 

base (Economía, 2005), Ll is the length of leaves, Lw is width 

of leaves, Lw is leaf width, which varies by becoming 

greater in the center of the leaf’s length, Lth is leaf 

thickness, which is the distance from the lower surface or 

back side to the upper surface; it also varies by becoming 

smaller from the base of the leaf to the spine, Cl is the 

cutting length, ∆L is an extra length for the grip, which for 

safety reasons this part will not be shredded. 

 

 
 

Figure 1. Schematic of the Agave angustifolia Haw. leaf. 

 

The agave leaves are linear, rigid, straight, ascending, 

green, or glucose green to yellowish green, with almost 

straight margins. Before the tests, due to the above 

characteristics, the product should be cut longitudinally to 

uniformize the samples in size and shape, to then measure 

their mass. 

 

2.2 Shredding test 

A test bench was designed and built to shred the agave 

leaves. First, the dimensions of the shredder component 

were defined according to Pérez del Río et al. (2013) 

(Figure 2), where, Sdd is the shredder drum diameter, and 

Sdl is the drum length, which coincides with the length of 

the blades to cover the entire Lw, i.e., Sdl =Bl. 

An angular profile with dimensions of 0.0381 x 0.0381 x 

0.0635 m was used to support the shredder blades. As an 

energy source, a 5.6 kW (7.5 HP) electric motor with a 

rotation frequency 𝜔=1765 rev/min was selected. The 

feed roller diameter (Rd) to meet the leave grip condition 

was 0.115 m. The number of blades in the shredder 

cylinder was Z=16 to maximize the number of cuts to the 

leaf due to the rotation movement (Figure 2a), which was 

established through previous trials that consisted of 

increasing 𝜔 for a blade edge tangential speed (Ts) until 

the entire leaf cortex was detached. 

To establish the study variables, the mechanical process of 

shredding agave leaves was analyzed in three main stages 

(Figure 2b). Firstly, there is a partial cut by shearing of the 

leaf; in this cut, the distance between the blades and the 

counter-blade, called shredding clearance (Sc), must be 

greater than the fibers’ thickness to avoid cutting them; 

but it must not exceed a small range of this thickness to 

prevent soft material particles from remaining without 

detaching. The partial leaf shearing is due to the cutting 

forces in the initial cut stage; these are oriented in the 

same direction as the counter-cutting elements and the 

opposite direction. But then, because of the shredder’s 

circular movement, they are located tangentially to it, 

allowing the fiber´s accommodation in the space 

belonging to Sc and thus avoiding total shearing.  

Another essential geometric parameter is Sh; the 

shredding height expressed as the vertical distance from 

the counter-blade to the shredder cylinder center.  

 

 

a) b) 

 

Figure 2. Schematic of the agave leaf shredder: a) Shredder elements. b) Physical variables of the shredding process. 
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Secondly, the total detachment of the soft material occurs, 

caused by the thrust of the inner part of the blade´s edge. 

This process requires a thrust speed (Ths) to completely 

detach the soft material particles from the fibers. If the 

minimum speed is not reached, the soft material particles 

will move along with the fibers to the interior of the 

machine. And thirdly, there is a soft material thrusting 

caused by the inertia of its weight adhered to the blades. 

During the second and third stages, a friction process 

occurs between the blade´s edge and the fibers. In 

principle, this happens when the leaf input speed (Lis) to 

the shredder is very low and occurs when the leaf recoil 

speed (Lrs) is very low; in both cases, the fibers undergo 

excessive blade action, which causes their deterioration 

and rupture (Pérez del Río et al., 2013).  

Under the above considerations, the Sc, Lis, and Lrs values 

were taken as design variables; these last two were 

calculated as follows (Equation 1 and 2): 

d
is

it

L
L

L
=    (1) 

d
rs

rt

L
L

L
=    (2) 

where, Ld is the shredded leaf length, Lit is the leaf input 

time to the shredder element, Lrt is the leaf recoil time from 

the shredder element. 

The Sc adjustment was made with a thickness gauge, 

placed between the blade and the counter-blade. After 

shredding, the fibers were cut and the grip weight of half 

of the shredded leaf was determined; this grip 

corresponds to the part near the base that was not 

shredded and was used to thrust the leaves inside the 

machine and then remove them.  

Besides, the weight of the whole fibers (Wfw) together with 

the waste material that remains adhered was determined, 

as well as the weight of the broken fibers. Later, the fibers 

were sun-dried for 48 hours to determine the weight of 

the dried entire fibers, and the waste, as well as the weight 

of the mechanically cleaned dry fibers. 

The percentage of fiber waste (Fw) is given by the 

percentage ratio indicated in Equation (3), while the 

percentage weight of the broken fibers (PcBf) relative to 

the total weight of the broken fibers plus the clean fibers 

is given by Equation (4): 

( )&
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f ww
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=

+
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where Wf &ww is the weight of entire fibers and waste, Cfw is 

the weight of clean fibers, Bfw is the weight of broken 

fibers. In the shredding process, 0% damaged fibers and 

0 % waste would be ideal. But these variables are inversely 

proportional, i.e., as one increases, the other decreases, 

and vice versa (Pérez del Río et al., 2013).  

Below is the shredding process quality classification 

according to the fiber waste percentage. 

1. When there is a waste excess, the fibers come out with 

a continuous part of non-fibrous material that 

prevents separation. As a result, it is impossible to see 

a considerable number of threads, and the process 

quality is poor. 

2. For a medium amount of waste, the shredding 

process quality is medium and almost acceptable 

when there are some areas where the fibers continue 

to be attached to the fibrous leaf part. 

3. For an acceptable amount of fiber waste, the quality 

is good when some particles of non-fibrous material 

are observed. Still, the fibers are independent and 

ready to be processed and used. 

 

2.3 Shredding process modeling with Neural Networks 

To optimize the shredder’s design parameters, a neural 

network was developed using the Neural Network 

Toolbox included in MATLAB software, choosing a feed-

forward back propagation neural network using the newff 

command (Figure 3):  

net=newff(E,O,[10,5],’tansig’, ’purelin’, 

’trainlm’,’learngdm’,’mse’). 

The number of neurons in the neural network input layer 

was defined by the number of design parameters, which 

were adjusted to different values during the tests; these 

were three: shredding clearance, leaf input speed, and leaf 

output speed. The output variables were the quality 

parameters of the shredding process (the percentages of 

fiber waste and broken fibers); i.e., two neurons in the 

output layer element.  

For the hidden input and output layers, training was 

carried out for different combinations. The network was 

programmed with a hyperbolic tangent sigmoid transfer 

function for the input, while a linear transfer was used for 

the output. The Levenberg-Marquardt backpropagation, 

a network formation function that updates weight and 

bias according to Levenberg-Marquardt optimization, was 

used for network training. The weight and trend learning 

function used was gradient descent. The root means 

squared error (RMSE) was used to measure network 

performance and show algorithm consistency. 

 

 
 

Figure 3. Feed-Forward Neural Network. 
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2.4 Approximation of the model to experimental values 

Using a linear regression, it is proposed to contrast and 

analyze the model implemented with the experimental 

data of training, validation and testing. 
 

2.5 Application of Genetic Algorithms to solve multi-

objective optimization  

Based on the problem complexity, an optimization 

method was implemented through GA to search for the 

weight of the artificial neural network. The optimization 

carried out by Neural Network Toolbox in MATLAB 

through GA, gamultiobj (objFcn, nvars) finds the points in 

the Pareto front of the objective function that in this case 

is the neural network, objFcn=@(E)sim(net,E’) and nvars is 

the dimension of the optimization problem (number of 

decision variables). That is, it minimizes the percentage 

values of fiber waste and the percentage of broken fibers. 

Constraints to the problem are given by the limits of the 

experimental variables; where Sc was constricted as (1.2< 

Sc <2.0) mm, input speed as (0.4< Is <0.6) m/s and output 

speed as (0.6 < Os < 1.0) m/s. 

Linear inequality constraints are left in the form A=[-1 0 0; 

1 0 0 ; 0 -1 0; 0 1 0; 0 0 -1; 0 0 1]. The values for this 

inequality would be as follows: b=[-1.25; 2; -0.4; 0.6; 0.5; 

0.8]; both linear inequality constraints, a lower and a 

higher limit of the solution, are left without values because 

the problem has no such constraints. 

 

3. Results and discussion 
 

3.1 Leaf characteristics 

The main dimensions of agave leaf samples (Figure 1) are 

presented below, where Tl fluctuated between 15 and 20 

mm, Ll had a length between 1.1 and 1.3 m, an 

approximate Lw of 80 to 100 mm, and an average moisture 

of 79.5 %. Besides, Cl was set at 1 m from the leaf tip, after 

trimming the spine, which was maintained with ∆L.  

Then, the agave leaf was divided in half along the fiber to 

avoid its concave shape in the cross-section, because 

given their stiffness, it does not settle on the counter-

blade and makes shredding difficult. Finally, the leaf 

portions were weighed before shredding. 
 

3.2 Shredding test 

The main dimensions of the shredder to perform the test 

were Sdd=0.370 m and Sdl=0.285 m. Also, the Sc values 

considered for the experiment were 1.25, 1.3, 1.5, 1.6 and 2 

mm, and the minimum 𝜔 was 1500 rev/min, for Ts=27.175 

m/s. Too, Sh was set at 0.028 m, obtaining a distance from 

the shredding section of 0.00020439 m. 

For the proposed experiments, the variation in Lis 

presented a greater influence on the length of a blade’s 

action than the variation in 𝜔. 

Figure 4 shows the relationship between the variables that 

define shredding quality, considering Pérez del Río et al. 

(2013) as a comparative reference, indicating that 

increased fiber cleanliness leads to an increase in the 

percentage of broken fibers. 
 

 
 

Figure 4. Shredding quality. 
 

 

According to the experimental results, for a shredding 

distance of 0.0013 m, 37 % cleanliness was obtained; thus, 

the expected percentage of whole fibers will be 78 % with 

95 % reliability (Figure 5a). 

For the percentage of broken fibers (Figure 5b), there was 

an excess when the number of broken fibers was greater 

compared to the entire fibers, from a third to about half. 

Besides, the excess of broken fibers ended up hindering 

the shredding process by accumulating at the time of 

removing the leaf; this percentage was medium when 

there were several broken fibers that did not hinder the 

shredding process. But it was a significant loss that could 

affect yield at the process´ end. This parameter was 

acceptable when only fibers that had structural anomalies 

or those that had a lower resistance to the adhesion 

strength of the non-fibrous material on them, and it was 

inevitable that they would break. 
 

 
Figure 5. Behavior of the experimental shredding process about modeling: a) Waste. b) Broken fibers. 
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Table 1 shows a classification by estimates of the 

shredding quality based on observations made of the 

fibers at the time of leaving the shredder element. 

 

Table 1  

Estimates of the shredding process quality 
 

Classification Waste (%) 
Broken fibers 

(%) 

Poor 70-75 30-40 

Medium 65-75 20-30 

Good 55-65 20-0 

 

From the above, the influence of Sc, Lis, and Lrs is visible as 

the machine design parameters that constitute 

independent variables, since their variation has a direct 

influence on shredding quality. In this case, shredding 

quality would be the dependent variable and this, in turn, 

is defined by the percentage of whole fibers; this depends 

on the relationship between the weight of the clean whole 

fibers and the weight of the broken fibers. 

 

3.3 Shredding process modeling with Neural Networks 

Several data percentage combinations were used for 

neural network training validation, where the best values 

were obtained for 70/100, i.e., 70 %, 15 % to compare the 

input values with the output ones, and 15 % to verify the 

network effectiveness. 
 

net.divideParam.trainRatio =70/100; % Adjust as desired 

net.divideParam.valRatio = 15/100; % Adjust as desired 

net.divideParam.testRatio = 15/100; % Adjust as desired 
 

In the hidden input layer, training was carried out with 5 

to 15 neurons, obtaining better results for 10, while in the 

hidden output 3 to 10 were used, and a better result was 

also obtained with 10 neurons. 

During this procedure, the best value of RMSE = 0.099 was 

obtained at nine training epochs (Appendix Aa and Ab), 

likewise, Kaveh & Chayjan (2014) and Zarein & Jaliliantabar 

(2014) obtained similar statistical results when 

implementing this method in the prediction of the 

dehydrated properties of Pistacia atlantica L. and white 

mulberry. 
 

3.4 Approximation of the model to experimental values 

With the linear regressions, it was possible to check the 

model reliability on the experiments, obtaining in total a 

regression coefficient of more than 0.96; this will allow 

determining the leaf shredder characteristic design 

parameters. 
 

3.5 Application of Genetic Algorithms to solve multi-

objective optimization  

Figure 6 corresponds to possible design solutions of the 

elements studied, generated with the Pareto front during 

multi-objective optimization, where both the broken fiber 

and fiber waste criteria were minimized. The optimum 

point corresponds to option 14 which presented the 

lowest number of broken fibers (2.83 %) and at the same 

time the highest amount of waste (73.15 %), so, the 

number 16 has the lowest percentage of fiber waste with 

61.18 % but the highest percentage of broken fibers (20.38 

%). Also, all values were selected by shredding quality 

criteria (Appendix B). 

 
Figure 6. Pareto front. 

 

According to the machine adjustments, in variable 14 a 

product performance, Pp, of 26.85 % was obtained, a value 

slightly higher than Ccosi & Juárez (2019) who report 

Pp=26.02 % for the shredding of pineapple leaves in a 

similar machine. In this regard, Table 2 shows a 

comparison of the performance between the optimization 

of the shredding process applied to this study with respect 

to Ccosi & Juárez (2019), highlighting that to a greater 

amount of fiber waste the product performance 

decreases, thus showing the direct dependence of Fw on 

Pp, without relying on Sc. 
 

Table 2  

Performance of the shredded product  
 

Prototype Option Sc (m) Fw (%) Pp (%) 

Present work 
14 0.0013 73.15 26.85 

16 0.0013 61.18 38.82 

Ccosi & Juárez (2019) 
 0.0010 73.97 26.02 

 0.0015 86.11 13.88 
 

In Table 3 a comparison is shown indicating the main 

parameters that influence the shredding process of the 

Agave Angustifolia Haw leaves, where the machine’s 

productivity is quite high, so its use is very indispensable. 

The fiber cleaning was greater by the manual process, yet, 

in relation to Fw, both the manual and mechanical-

optimized processes are similar. When shredding the 

leaves with the mechanical-un optimized process, there is 

a low depulping efficiency, increasing to 90% with the 

modifications made. The fiber obtained through the 

mechanical-optimized process decreases the damage 

caused by the blades, as these only slipped without 

reaching to cut them. 

With regard to the mechanical properties of fibers, the 

resistance to the tension and the elasticity module 

reported by García et al. (2020) using the machining 

process was greater than Silva et al. (2009) with the 

manual method. With the optimization of the equipment, 

a higher quality fiber was obtained because the pulping 

percentage increased. Also, the optimized machine does 

not deteriorate the environment because the amount of 

water used was less than with the manual process. The 

work capacity of the shredder meets the needs of the 

producer, which would allow increasing its fiber 

production. 
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Table 3  

Comparison of shredding processes 
 

Parameter Units 

Shredding method 

By 

hand 

By machine 

Without 

optimizing 

Optimiz

ed 

Feed rate (m/s) N/A 0.2 0.45 

Water 

consumed 
(l) 48,610c 10 10 

Energy 

consumption  
(kJ) N/A 7.47 14.94 

Power 

requirement 
(kW/t) N/A 5.6 5.6 

Fiber 

production 
(kg/h) 0.012c 6 8 

Fiber 

cleaning 
(%) 90c 50 61 

Waste  (%) 60c 72 60 

Mechanical 

damage 

(broken 

fibers) 

(%) 5c 35 10 

Performance (%) 5.12c 70 80 

Linear density (Denier) 263a 248.33b 248.33b 

Fiber 

resistance 
(MPa) 356.52a 494.8b 494.8b 

Elongation  (%) 2.015a 1.11b 1.11b 

Elasticity 

module 
(GPa) 17.89a 26.7b 26.7b 

N/A: Does not apply Silva et al. (2009)a, García et al. (2020)b, López (2008)c. 

 

Regarding the costs of the machine, Table 4 mentions the 

main items that make up its value, after optimizing the 

process, indicating an increase in the investment of 19.84% 

about the prototype price without optimizing, stressing 

that, in exchange for this price, improvements in the 

performance and quality of processed fiber would be 

obtained. 
 

Table 4  

Cost of the Agave shredder 
 

Description 
Cost (USD)* 

Without optimizing Optimized 

Design 2673.72 3900.52 

Mechanical elements 1934.583 1934.583 

Construction and assembly 1349.103 1349.103 

Raw material 223.167 223.167 

Total 6180.573 7407.373 

*Values calculated by Mayorga (2004), updated to 2022, considering inflation 

of 110% according to INEGI between 2004-2022. 
 

In general terms, hybrid models have an acceptable level 

of reliability because they integrate the development of 

ANNs with GAs for the optimization of various 

engineering problems that present a high level of 

complexity regarding their solution, as in Khezri et al. 

(2020) who through using ANNs and GAs report the 

development of a hybrid model of the Steady-State GTL 

process to estimate the wax production rate, then 

implemented in an optimization problem to maximize the 

solution of the GTL parameters that improves the wax 

production and reduces the time of calculations. So, Han 

et al. (2021) implemented this combination to design an 

appearance plan for developing industrial products, 

taking as an example the shape of a set of drones, where 

the hybrid model presented a very high accuracy allowing 

to test this plan in a better way, both practical and 

mathematically, compared to traditional methods. Other 

optimization cases were applied in the work of 

Pirmohammad & Esmaeili Marzdashti (2018), in 

multicellular structure tubes, with five different cross-

sectional shapes, used to select an energy absorbing 

device with the best crash worthiness capability, where it 

was found that octagonal multi-cell structure presented a 

better resistance on other test variants. Similarly, in Wang 

et al. (2021) a prediction model to describe the 

morphology of laser induced TIG hybrid welding joints by 

using the BP neural network optimized through the GA 

was established; in this case, the results showed that the 

estimated values were quite accurate relative to the actual 

profile of the welding joint, because the mean absolute 

percentage error of each group of data presented a good 

fit. 

 

4. Conclusions 
 

A hybrid model that involves artificial intelligence, based 

on a neural network and a genetic algorithm, was 

developed to establish the relationship between the best 

shredding process and the optimal design parameters 

selection of an Agave angustifolia Haw leaf shredder using 

numerical methods. The machine’s constructive 

characteristics were modeled using innovative design 

tools through the hybrid algorithm mentioned, which 

could be capable of addressing the design problems of 

agricultural machine elements. Multi-objective 

optimization using genetic algorithms proved to be a 

practical way to achieve an optimal design solution in the 

face of a complex problem exacerbated by a lack of 

information. The study of the problems in the selection of 

multi-objective operating characteristics of agricultural 

machinery is an important issue that should be addressed 

in future research work. 
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Appendix 
Appendix A 

 

 
Neural network: a) Performance. b) Training. 

 

Appendix B 

Pareto’s solutions 

 

Option Shredding clearance (Sc) Input speed (Lis) Recoil speed (Los) 

1 1.6414 0.4015 0.7400 

2 1.4831 0.5151 0.7561 

3 1.2675 0.4695 0.7540 

4 1.7299 0.4414 0.7702 

5 1.6419 0.4377 0.7614 

6 1.6819 0.4107 0.7760 

7 1.652 0.4724 0.7540 

8 1.5027 0.5406 0.7432 

9 1.6907 0.4710 0.7572 

10 1.6150 0.4662 0.7517 

11 1.6250 0.4382 0.7619 

12 1.2766 0.5245 0.7491 

13 1.7050 0.4008 0.7791 

14 1.8086 0.3992 0.7801 

15 1.6580 0.4337 0.7639 

16 1.2490 0.3990 0.7500 

 
 


