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Abstract 

Agricultural and urban expansion has caused considerable degradation of ecosystems. In the case of Peruvian high Andean grasslands, it 

was reported that between 2000 and 2009, this ecosystem was reduced by 7%. The limited or no protection they receive is partly due to 

the fact that the benefits of ecosystem services are not widely known. This research aims to establish and predict the influence of high 

Andean grasslands on the annual occurrence of landslides. To do so, we identified occurrences of landslides, falls, huaycos, avalanches, 

and alluviums in high Andean grasslands. We also examined urban areas and agricultural zones of Peru for the period from 2003 to 2016. 

Subsequently, we extracted data on precipitation, temperature, slopes, soil types, and geographical variables. This data was used to train 

a machine learning model. The results show that 96% of landslides occurred in human-intervened areas, and only 4% in high Andean 

grasslands. Precipitation and slope thresholds for landslide occurrence are higher in high Andean grasslands compared to agricultural and 

urban areas. The best-performing machine learning models were linear regression, Gaussian processes, random forest, and support vector 

machine. They had coefficients of determination of R² = 0.80, 0.80, 0.66, and 0.64, respectively. Predictions show that if agricultural or 

urban areas are established in wet or dry puna grasslands, the average number of occurrences multiplies. The multiplier factors are 2.1 and 

7.08, the number of deaths by 2.8 and 10.49, the number of houses destroyed by 2.4 and 7.51, and the number of roads destroyed by 2.2 

and 7.37, respectively. The study demonstrates that conserving high Andean grasslands significantly reduces landslides compared to urban 

or agricultural areas. 
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1. Introduction 

High Andean grasslands provide essential ecosystem 

services, from water regulation and supply to 

biodiversity conservation. They function as natural 

reservoirs, ensuring a consistent supply of water for 

agricultural, domestic, and industrial use (Mosquera et 

al., 2023). Their rich biodiversity includes endemic 

species, highlighting their importance for conservation 

(Mills et al., 2023; Ríos-Touma et al., 2023). As carbon 

sumps, they are important in climate change 

mitigation, sequestering CO2 (Alavi-Murillo et al., 

2022). However, they face threats from agricultural 

and urban expansion, with a notable reduction of wet 

puna grasslands by up to 7% between 2000 and 2009 

(Madrigal-Martínez et al., 2019; Zari et al., 2019). 

Two types of grassland-dominated ecosystems have 

been identified in Peru: grasslands located in the wet 

puna and grasslands located in the dry puna. The dry 

puna grassland is a high Andean ecosystem with 

herbaceous vegetation that can occupy flat or 

undulating terrain, or hills with soft to moderate slopes. 

The soil has a sandy loam texture with low organic 

matter content, with a soil cover of less than 35%, and 

a maximum height generally not exceeding 1.5 meters. 

The climate in the dry puna grasslands is highly 

seasonal and is classified as subhumid according to the 

Holdridge bioclimatic classification. It is characterized 

by high temperatures and low precipitation during 

most of the year. The seasonality is pronounced, with 

a very intense dry season, especially in the south and 

west of the ecosystem, reflecting conditions typical of 

a subhumid climate where humidity fluctuations are 

significant and define the predominant herbaceous 

vegetation of the area. The vegetation is mainly 

composed of low grasses and grasslands with strong 

xeromorphic cacti with stiff, hard, sharp leaves. There 
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are also scattered resinous shrubs, along with 

saxicolous plants on rocky outcrops (usually with 

shrubs) and canllares (Margyricarpus sp. formations). 

The stands of Puya Raimondi form a remarkable 

community in these grasslands. The grasslands located 

in the dry puna cover an area of approximately 3.78% 

(4,887,186.88 ha) of the national territory, in the 

departments of Ayacucho, Apurímac, Arequipa, 

Cusco, Puno, Moquegua, and Tacna (MINAM, 2019b). 

The other type of high Andean grasslands are the 

grasslands located in the wet puna. They are 

characterized by herbaceous plants, mostly low 

grasses and herbs that grow in scattered clumps and 

have hard stems and leaves. There are also some 

scattered clumps of shrubs and saxicolous plants on 

rocky outcrops. According to the Holdridge 

bioclimatic classification, the climate of the wet puna 

grasslands is humid to super-humid, as shown in 

Figure 1. This zone is characterized by more constant 

humidity and higher rainfall than the dry puna. It can 

occupy flat, undulating, or hilly terrain with gentle to 

moderate slopes. It has a coverage of 35-50%, and its 

height does not usually exceed one and a half meters. 

Puya Raimondi stands also form a dominant 

community in this type of grassland. These grasslands 

cover an area of approximately 9.26% (11,981,914.03 

ha) of the national territory, distributed in the 

departments of La Libertad, Ancash, Lima, Junín, 

Pasco, Huancavelica, and Ayacucho (MINAM, 2019b). 

The reduction of high Andean grasslands leads to the 

loss of ecosystem services such as water regulation in 

the upper parts of the watersheds by capturing 

rainwater and water from the environment, passing 

through the filtration process, and subsequently 

supplying the lower parts of the watersheds. Some 

studies have shown that high Andean grassland 

ecosystems can provide better water quality in 

watersheds; in a study comparing two Peruvian micro-

watersheds, Gocta and Chinata, it was found that the 

largest water supply is located in Gocta, as it has a 

larger area of high Andean grassland that fulfills the 

function of capturing and releasing water to the 

drainage network of the micro-watershed, while the 

Chinata micro-watershed, which has a minimal area of 

high Andean grassland in the upper parts, provided 

less quantity and quality of water (Oliva et al., 2017). 

Another ecosystem service of high Andean grasslands 

is the reduction of surface runoff and soil erosion; 

there is a direct relationship between the proper 

management of these ecosystems and soil 

conservation (Vega-Chuquirimay & Torres-Zuñiga, 

2013). 

Puna grasslands are unique ecosystems that develop 

in the high Andean regions of Peru. Currently, these 

ecosystems have been severely reduced due to 

agricultural and urban expansion (Zari et al., 2019). 

According to Madrigal-Martínez et al. (2019), the 

grasslands located in the wet puna were reduced by 

7% between 2000 and 2009. In Peru, it has been 

reported that high Andean grasslands are widely used 

as a forage source for cattle, camelids, sheep and 

vicuñas (Cossios-Meza, 2018). Livestock activity can 

have a double impact on the degradation status of 

high Andean grasslands. Overgrazing, especially in 

communal areas, can reduce land productivity. 

However, well-managed livestock and pastoral 

practices can also improve ecosystem services 

(Monge-Salazar et al., 2022). Projections for the year 

2100 in the central Andes indicate that rising 

temperature indices, shrinking glaciers, and expansion 

of agricultural areas will lead to a change in the surface 

area of grasslands, and their projection indicates that 

the extent of grasslands could be reduced by up to 

70% (Flores, 2016). 

One of the little-studied ecosystem services of high 

Andean grasslands is the potential for landslide 

reduction. Studies in similar ecosystems have shown 

that high Andean grasslands and ecosystems have a 

significant influence on landslide reduction 

(Bonnesoeur et al., 2019a; Molina et al., 2019; Tasser et 

al., 2003). However, the number of studies on landslide 

prediction in these areas is very small or non-existent. 

 

 
 

Figure 1. Identification of Peruvian high Andean grasslands: a) dry puna grassland and b) wet Puna grassland. Source MINAM (2019). 
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One of the main obstacles for landslide prediction 

is that traditional physical modeling is very complex 

because there are many variables and complex in-

teractions that trigger landslides; however, other 

modeling approaches, such as machine learning, 

are more suitable for these analyses. Landslide pre-

diction models can be divided into two groups: nu-

merical models and data-driven models. Compared 

to numerical models, data-driven models tend to 

be more popular due to their perceived simplicity, 

often more accurate prediction, and lower cost. 

Data-driven models, especially machine learning 

techniques have been widely used to “learn” the 

relationship between landslide occurrence and 

landslide-related factors (Adnan et al., 2020; Al-

Najjar & Pradhan, 2021; Arabameri et al., 2022; Bui 

et al., 2019; Chang et al., 2023; Gupta & Shukla, 

2023; Hassangavyar et al., 2022; Huang et al., 2020; 

Kainthura & Sharma, 2022; Kuradusenge et al., 

2020; Liu et al., 2021; Merghadi et al., 2018; Pham et 

al., 2018, 2019, 2022; Saha et al., 2023; Sun, Chen, 

et al., 2023; Sun, Gu, et al., 2023; Tien Bui et al., 

2019; Zhang, Fu, et al., 2022; Zhang, Li, et al., 2022; 

Zhou et al., 2018). 

Machine learning is used as a descriptive tool in 

ecosystem services research, where the automation 

aspect enables rapid production of large amounts 

of complex data and predictive modeling. The vari-

ety of ways in which it is incorporated into ecosys-

tem services research methodologies highlights its 

value as an adaptable extension to traditional data 

analysis across domains (Scowen et al., 2021). 

For the above reasons, in this research we want to 

analyze the scenarios of land cover change from 

high Andean grasslands to urban or agricultural 

soils and how these changes can contribute to the 

increase of annual landslides, so the following ques-

tion is posed: How does land cover change from 

high Andean grasslands to agricultural or urban 

soils increase the annual occurrences of landslides? 

The hypothesis put forward in this study is that land 

cover change from high Andean grassland to agri-

cultural or urban land at least doubles annual 

landslide occurrences. 

 
2. Methodology 

2.1. Location 

The research was conducted in Peru, located in the 

central and western regions of South America. The 

areas of analysis are the high Andean ecosystems 

of wet puna and dry puna grasslands in the country. 

For contrasting the influence of these ecosystems 

on landslides, the agricultural and urban areas of 

the country were analyzed, as shown in Figure 2. 

This information was taken from the map of 

ecosystems in Peru (Table 1). 
 

2.2. Descriptive analysis of factors related to mass 

movement in high Andean grasslands 

The following sections explain the origin and char-

acteristics of the data to be used. Although the data 

have different spatial and temporal resolutions, the 

idea is to use the greatest possible temporal extent 

of each type of data. By cross-referencing the dates 

of the data types, a database is obtained that is as 

broad as possible in terms of the factors that cause 

landslides (precipitation, temperatures, slopes, 

cover, and soil type) and landslides per year. 
 

Precipitation and temperatures 

In Peru, there is a historical gridded database of 

precipitation and temperatures known as the PISCO 

product (Aybar et al., 2019). The daily precipitation 

database corresponds to version 2.1, while the daily 

temperature database (maximum and minimum) is 

from version 1.1. Both products are available from 

January 1981 to December 2016 and have a spatial 

resolution of 0.1 degree (∼ 10 km). These databases 

are available from the links in Table 1. Precipitation 

data were extracted for the entire extent of the 

grasslands, including wet and dry puna grasslands, 

and a comparative whisker plot was created to as-

sess the variation of precipitation in both 

grasslands. 
 

Slopes 

The digital elevation model was obtained from the 

Shuttle Radar Topography Mission (SRTM v. 4.1) 

product (Table 1), which has a spatial resolution of 

90 m. Using ArcGIS 10.7 software and this digital 

elevation model, the slopes in the wet Puna and dry 

Puna grasslands were identified. Then, a boxplot 

was used to make a visual comparison of the slope 

distribution in both ecosystems. 
 

Soil Type 

The 8 km resolution soil type map was obtained 

from FAO-UNESCO. The map was taken from 

South America Volume IV, whose gridded data 

were published in 2006. The predominant soil types 

present in both ecosystems were analyzed. To com-

pare these soil types, a heat map was created with 

the information on soil and ecosystem type. This 

heat map allows for the identification of patterns, 

such as the concentration of certain soil types in 

specific areas, and how these relate to the ecologi-

cal characteristics of each ecosystem. 
 

2.3. Descriptive analysis of mass movements 

Data on mass movements were taken from the 

Peruvian National Institute of Civil Defense 
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(INDECI), from the link shown in Table 1, selecting 

only emergencies related to mass movements such 

as landslides, falls, huaycos, avalanches/ floods. The 

geospatial information complementary to the 

aforementioned database was extracted from the 

National Information System for Response and 

Rehabilitation (SINPAD) of INDECI. The geographic 

location and dates of landslide occurrence allowed 

for the extraction of specific spatial and temporal 

information for each landslide occurrence. 
 

Table 1 

Data source 
 

Data Web link 

Rainfall http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.html?Set-Language=es  

Landslides https://www.datosabiertos.gob.pe/dataset/emergencias-hist%C3%B3ricas-registradas-con-sinpad  

DEM http://srtm.csi.cgiar.org/  

Peru’s Ecosystems map https://geoservidor.minam.gob.pe/wp-content/uploads/2019/01/MAPA-NACIONAL-DE-ECOSISTEMAS.zip   
 

 

 
Figure 2. Location of the study area and mass movements in the ecosystems of analysis for the period 2003-2016. 

http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.html?Set-Language=es
https://www.datosabiertos.gob.pe/dataset/emergencias-hist%C3%B3ricas-registradas-con-sinpad
http://srtm.csi.cgiar.org/
https://geoservidor.minam.gob.pe/wp-content/uploads/2019/01/MAPA-NACIONAL-DE-ECOSISTEMAS.zip


Scientia Agropecuaria 15(3): 333-348 (2024)                   Cerna-Cueva et al. 

-337- 
 

Comparison of mass movements for the period 

2003-2016 

The annual landslide occurrences for the period 

2003 - 2016 were compared by identifying the 

number of occurrences for each study ecosystem 

(high Andean grasslands, agricultural areas, and 

urban areas). The historical annual averages and 

percentage contribution of landslide occurrences 

for each ecosystem and/or land use were identified. 

 

Analysis of precipitation and landslide slopes 

Previously, climatic and soil type information was 

analyzed for the entire extent of the grasslands. In 

this section, the precipitation and slope characteris-

tics of each landslide event are analyzed in order to 

compare precipitation and slope thresholds for 

landslide occurrence. 

 

Summary of major landslide damage 

Using the INDECI database, the main destruction 

rates of the different types of landslides (landslides, 

landslides, mudslides, avalanches/alluvium) were 

determined. 

 

2.4. Data selection, training, and validation of the 

mass movement predictive model 

Data selection 

Landslides are influenced by land use (Chen & 

Huang, 2013; Chen et al., 2019; Glade, 2003; Karsli 

et al., 2009; Meneses et al., 2019; Reichenbach et al., 

2014; Van Beek & Van Asch, 2004), climatic factors 

(Borgatti & Soldati, 2018; Khan et al., 2021; Klose et 

al., 2017; Ma et al., 2020a; Pánek, 2019; Patton et al., 

2019; Peres & Cancelliere, 2018; Wood et al., 2020; 

Zhou et al., 2018), soil type (Cerri et al., 2017; Marin 

& Velásquez, 2020; Strauch et al., 2018; Wang et al., 

2020; Yu et al., 2021; Zhuo et al., 2019), slopes (Marc 

et al., 2018; Nguyen et al., 2017), and others (Forte 

et al., 2019; Mind'je et al., 2020; Palladino et al., 

2018; Xu et al., 2018). 

Based on the above, the variables of precipitation, 

temperature, evapotranspiration, altitude, slope, 

latitude and longitude, soil type, and land use (high 

Andean grassland, agricultural zone, and urban 

zone) were considered. For the application of the 

machine learning models, the aforementioned data 

were first preprocessed and selected. Climatic data 

from up to 5 days before the emergency occurred 

were considered because it is believed that these 

climatic variables can affect the hydrological cycle 

and the amount of water in the soil at the time of 

the landslide (Naidu et al., 2018). The result of 

considering all the variables mentioned above 

added up to a total of 128 independent numerical 

variables. This number of variables is impractical for 

training the machine learning model, so principal 

component analysis (PCA) was applied, which is a 

common technique to reduce the dimensionality of 

the model (Basu et al., 2022; Tang et al., 2020; Zhu 

et al., 2022). For the present study, a variance 

threshold of 95% was used. For the application of 

PCA, Z-score data standardization was previously 

performed. 

 

Training, validation and prediction 

Machine learning is a state-of-the-art analysis tool 

that has been widely used in landslide prevention 

(Ma et al., 2020b). Due to the complexity of topo-

graphic and geological conditions associated with 

landslide occurrence, more flexible nonlinear meth-

ods, such as machine learning algorithms, support 

vector machines (SVM), Gaussian processes (GP), 

random forests (RF), and linear regression (LR) are 

considered (Micheletti et al., 2013). In this research, 

once the variables were selected, different machine 

learning models were trained, and performance 

was evaluated using the coefficient of determina-

tion R². To generalize the model, cross-validation 

was used (Jiang & Wang, 2017). A group size of K=5 

was selected for cross-validation, not only because 

it is an optimal balance between evaluation accu-

racy and computational burden, but also because 

K=5 is a widely accepted and default standard in 

many software environments. Predictions were 

made in order to identify the annual occurrence of 

landslides in high Andean grasslands under three 

different scenarios: 
 

Scenario 1: Setting the average climate, slope, and 

soil type conditions of wet or dry puna grasslands, 

the annual number of landslides under vegetation 

cover or land use of wet or dry puna grasslands is 

predicted, respectively. 
 

Scenario 2: Setting the average conditions of cli-

mate, slopes, and soil type of wet or dry puna 

grassland, the annual number of landslides under 

vegetation cover or agricultural land use is 

predicted. 
 

Scenario 3: Setting the average conditions of 

climate, slopes, and soil type of wet or dry Puna 

grassland, the annual number of landslides under 

vegetation cover or urban land use is predicted. 

The prediction scenarios were designed to evaluate 

the impact of different land uses on the annual 

occurrence of landslides in high Andean grasslands, 

as depicted in Figure 3. These scenarios reflect real 

situations of land use change and expansion in 

urban and agricultural areas. Given the trend of 

converting natural ecosystems to agricultural or 
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urban uses, the scenarios seek to simulate average 

conditions. The relevance of these scenarios lies in 

their ability to provide prospective information on 

how land management practices and urban or 

agricultural expansion could influence landslide 

frequency, providing a basis for more effective 

prevention and mitigation strategies. 

 

3. Results and discussion 
 

3.1. Descriptive analysis of high Andean grasslands 

In the wet puna grasslands in Peru, the mean 

annual precipitation recorded is 727.4 mm, with 

extreme events reaching up to 3062.6 mm, while in 

the dry puna grasslands, the annual mean is 513.2 

mm with maximums up to 1156.3 mm (Figure 4). 

These data contrast with those recorded in the high 

Andean zone of Ecuador by Ochoa-Sánchez et al. 

(2018), where the mean annual precipitation is 

approximately 1300 mm, characterized by intra-

annual uniformity with low seasonality and a 

marked presence of drizzle, which constitutes 30% 

of the total annual rainfall. This variability between 

these high Andean zones could be due to 

differences in latitudinal climate patterns, in addi-

tion to data collection methodologies, with Peru-

vian data being interpolated from real and satellite 

stations through SENAMHI's PISCO product, 

reflecting a more detailed integration of local 

variability. The implications of these precipitation 

patterns on landslide susceptibility are significant. In 

Peru, extreme variability in precipitation, especially 

in wet puna grasslands, could increase the risk of 

soil saturation and, consequently, landslide risk 

(Ochoa-Sánchez et al., 2018). 

 

 
 

Figure 3. Schematic of the process of data selection, model training, validation and prediction of annual landslide occurrence under 

different scenarios of vegetation cover or land use. 
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In wet puna grasslands, the mean annual maximum 

temperature is 18.128 °C, with a range of 12.05 to 

26.62 °C, and the mean annual minimum 

temperature is 3.27 °C, with a range of -4.18 to 15.18 

°C. For dry puna grasslands, the mean annual 

maximum temperature is 17.13 °C, with a range of 

13.16 to 26.19 °C, and the mean annual minimum 

temperature is 0.65 °C, with a range of -8.55 to 

12.62 °C. The wide temperature fluctuations of the 

high Andean grasslands in both maximum and 

minimum temperatures can significantly influence 

landslides. Low temperatures reaching sub-zero 

values can cause freeze-thaw cycles of the soil, 

weakening its structure and increasing susceptibility 

to landslides, especially when combined with 

intense precipitation. On the other hand, high 

maximum temperatures can increase evaporation 

and reduce soil moisture, decreasing its cohesion 

and stability, which also favors the occurrence of 

landslides during rainfall events following dry 

periods (Perry et al., 2017). 

Regarding the slopes, the average value in wet 

grasslands is 16.93°, with a slope range from 0 to 

83.9°, while for dry puna grasslands, the average 

slope is 10.56°, with a range from 0° to 79.58°. The 

wide range of slopes in both ecosystems reflects the 

ruggedness of these areas, which favors the 

occurrence of landslides (Irigaray et al., 2000a). 

Regarding the soil type, in wet puna grasslands, 

33.05% Lithosols - Humid Cambisols - Vitric 

Andosols (I-Bh-Tv-c), 21.76% Lithosols - Luvic 

Phaeozems - Luvic Kastanozems (I-HI-KI-b), and 

14.11% Lithosols - Humid Cambisols were found. For 

dry puna grasslands, the proportions were as fol-

lows: 57.6% Lithosols - Vitric Andosols and 33.69% 

Lithosols - Humid Cambisols - Vitric Andosols. 

These results highlight the diversity of soils in the 

high Andean grasslands, partly aligning with the 

study by Wilcox et al. (1988), which emphasizes the 

variability of soils due to factors such as topo-

graphic position and parent material. Both studies 

emphasize the significant presence of Vitric An-

dosols, implying the influence of volcanic material 

in the formation of soils. 

The identified soils, especially the Vitric Andosols 

and Humid Cambisols, along with the native vege-

tation of the grasslands, play a decisive role in the 

stability of these areas. The Andosols, due to their 

porous structure and high permeability, favor water 

infiltration, reducing surface saturation that could 

trigger landslides. The grassland vegetation, 

adapted to these edaphic conditions, contributes to 

soil stability by retaining water and protecting 

against erosion. In contrast, areas with agricultural 

or urban use lack this natural regulation and reten-

tion capacity, increasing the risk of landslides 

(Wilcox et al., 1988). 

The identified soils, especially the Vitric Andosols 

and Humid Cambisols, along with the native vege-

tation of the grasslands, play a decisive role in the 

stability of these areas. The Andosols, due to their 

porous structure and high permeability, favor water 

infiltration, reducing surface saturation that could 

trigger landslides. The grassland vegetation, 

adapted to these edaphic conditions, contributes to 

soil stability by retaining water and protecting 

against erosion. In contrast, areas with agricultural 

or urban use lack this natural regulation and reten-

tion capacity, increasing the risk of landslides 

(Wilcox et al., 1988). 
 

 
Figure 4. Comparative description of physical characteristics related to landslides in wet puna grasslands (Pph) and dry puna grasslands (Pps). 
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3.2. Descriptive analysis of mass movements 

Comparison of mass movements for the period 

2003 - 2016 

As can be seen in Figure 5.a, during the analysis pe-

riod 2003 - 2016, for Peru, the total annual average 

landslide occurrence is 175.36, the least number of 

landslides occurring in wet puna and dry puna 

grasslands, with an annual average of 8.35 and 1.21 

respectively. These occurrences only represent 6% 

of the total, compared to other intervened 

ecosystems, such as agricultural and urban areas, 

where 94% of landslides occur. In areas intervened 

by humans where vegetation has been eliminated, 

the soil will be bare, predisposed to dry out and 

erode, leading to landslides later, since there will be 

greater surface runoff and soil instability. Added to 

this removal of vegetation cover is soil compaction 

due to the effects of grazing, the use of tractors for 

agriculture, urban growth, and road networks, all of 

which favor landslides (Bonnesoeur et al., 2019b; 

Persichillo et al., 2017). On the contrary, in the 

vegetation cover of ecosystems similar to the one 

in this study, such as moorlands, it has been shown 

that the presence of these ecosystems is crucial for 

retaining water, reducing surface runoff, and 

strengthening the soil, providing it with stability 

(Pinos-Morocho et al., 2021). 
 

3.3. Analysis of precipitation and landslide slopes 

The most critical factors that determine landslides 

are slope and precipitation, together with the veg-

etation cover of the ecosystem (Irigaray et al., 

2000b). According to Figure 6a and 6b), the 

average precipitation and slope thresholds for 

landslides are higher in high Andean grasslands 

compared to urban and agricultural areas, i.e., 

higher precipitation and steeper slopes are required 

in high Andean grasslands for landslides to occur 

compared to agricultural and urban areas. On the 

other hand, precipitation thresholds for landslides 

are lower than those found in other studies, where 

precipitation thresholds for landslides are lower 

than those found in other studies (Dahal & 

Hasegawa, 2008; Posner & Georgakakos, 2015), 

where threshold precipitation amounts were 98 mm 

and 140 mm per day, compared to this study, where 

average precipitation amounts were less than 30 

mm, these significantly lower amounts can be ex-

plained by the variety of climate in these geo-

graphic areas, but mainly by the limitations of the 

interpolated precipitation data from the PISCO 

product used in this study. The PISCO product does 

not capture maximum precipitation very well, espe-

cially in areas where there is a low density of 

weather stations, and the lower the density of 

weather stations, the greater the bias of the inter-

polated value, which would explain why the precip-

itation thresholds are lower values than those found 

in other studies. Although the PISCO product does 

not do a great job of showing the highest levels of 

precipitation, it does an excellent job of showing the 

differences and general trends in precipitation in 

different areas. This means that the difference in the 

average precipitation threshold for landslides in ur-

ban, agricultural, and high Andean grassland areas 

is a good reflection of reality (Aybar et al., 2020). 

 

 
 

Figure 5. Comparative description of physical characteristics related to landslides in wet Puna grasslands (Pph) and dry Puna grasslands (Pps). 
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3.4. Summary of the main damage caused by 

landslides 

In Peru, there are different types of landslides, each 

with its own rate of destruction and lethality. Alluvi-

ums occur when water accumulates in lagoons, 

dams, or reservoirs; when they overflow, they give 

rise to a violent current of water that quickly drags 

stones and mud. On the other hand, alluviums/ 

avalanches are the violent detachment of a large 

mass of glacier or snow, accompanied in some 

cases by rocky elements. Both types of landslides 

mentioned occur with great violence and 

unexpectedly, which is why these types of landslides 

present the highest lethality rates and destruction 

of houses and roads, according to Table 2. Falls are 

portions of earth, rocks, and vegetation that slide 

downhill. The main difference between these two 

types of landslides is that falls, besides occurring 

during the rainy season, can also occur after a 

strong earthquake due to the transit of heavy ma-

chinery, explosions, construction, and excavations. 

As we can see in Table 1, landslides are more de-

structive than falls, and this is because landslides are 

associated with the dragging of debris and earth 

flows by the action of water unleashed by events 

such as heavy rains. This type of landslide is more 

predictable than falls, as the latter are associated 

mainly with the rolling of rocks, which tend to be 

more predictable. The word “huayco” has its origin 

in the native languages of Peru and means ravine. 

The huayco is a mixture of mud and stones that ad-

vances, in most cases taking the beds of dry ravines, 

hence its name. As can be seen in Table 2, huaycos 

have a higher rate of destruction of houses than 

landslides and falls. This is explained by the fact that 

the houses are usually located near the banks of 

bodies of water, in some cases, so the degree of 

exposure of the houses is greater, while the rate of 

destruction of roads is lower than that of landslides 

since the latter occur not only near the riverbeds 

but throughout the entire area of influence. 

 

Table 2 

Average rate of fatalities destroyed houses and collapsed roads 

per 100 landslides 
 

Landslides Fatalities 
Homes 

destroyed 

Collapsed 

roads 

Alluvium/avalanche 53 589 200 

Falls 5 107 11 

Landslide 12 198 141 

Huaico 8 289 79 

 

3.1. Data selection, training, validation, and 

limitations of the predictive mass movement 

model 
 

Data Selection 

The principal component analysis identified 

latitude, slope, and precipitation as key variables, 

accounting for 94.67% of the cumulative variance 

using PCA, as shown in Figure 7. Precipitation and 

slope are recognized as critical factors in landslide 

occurrence. These findings align with those 

reported by Kuradusenge et al. (2020a), who found 

contributions of 40.49% and 32.74% for precipita-

tion and slope, respectively. Regarding slope, Al-

Najjar & Pradhan (2021) assigned an importance 

value of 17.8% to this factor, making it one of the 

most significant parameters in landslide incidence. 

Similarly, Liu et al. (2021) found the importance of 

slope to be 29%, suggesting that it may have even 

greater relevance in specific contexts. The relation-

ship between latitude and precipitation emerges as 

an intriguing aspect (Dai et al., 2007) that adds an 

additional dimension to the understanding of 

landslides. This association is generally not 

highlighted as highly significant in the literature, as 

seen in Bui et al. (2020), where elevation and slope 

are emphasized more than climatic factors, with 

values of 23.9% and 16%, respectively. These 

comparisons suggest that, while slope and 

precipitation are critical parameters for landslides, 

latitude may act as an indirect factor reflecting 

variations in precipitation and other climatic factors, 

which could be of interest for future research. 
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Figure 7. Comparative description of physical characteristics related to landslides in wet Puna grasslands (Pph) and dry Puna grasslands (Pps). 

 
Training, validation and prediction 

After selecting suitable data, various machine learning 

models were trained. Linear Regression and Gaussian 

Process models showed the best performances, with 

R² coefficients of 0.80 for both, as shown in Table 3. In 

contrast, Random Forest and Support Vector Machine 

models achieved R² values of 0.66 and 0.64, 

respectively. Although Random Forest and logistic 

regression models are commonly used to predict 

landslides, as seen in previous studies (Brenning, 2005; 

Goetz et al., 2015; Kuradusenge et al., 2020b; Pham et 

al., 2018b), these generally focus on binary prediction 

of landslide occurrence or absence. However, this 

study aims to quantify the annual frequency of 

landslides in four different ecosystems: urban areas, 

agricultural areas, and the high Andean grasslands of 

wet and dry puna. For this reason, regression models 

were chosen instead of classification models. An R² 

coefficient of 0.80, as found in this study, means that if 

the model encounters 100 real landslide events, it can 

accurately estimate approximately 80 of those events. 

Using the machine learning models in this study, 

critical precipitation, and slope thresholds for 

predicting landslides were determined, indicating that 

high Andean grasslands require more extreme 

conditions compared to urban and agricultural areas. 

Additionally, these models evaluate how urbanization 

and agricultural expansion influence landslide 

frequency. 

In terms of predictions, changes in land use and their 

effect on the annual number of landslides were 

analyzed (Figure 8a and Figure 8b). Table 4 shows that 

if urban areas are established in wet puna grassland 

ecosystems, the number of alluviums/ avalanches, falls, 

landslides and huaycos would increase from 3 to 14, 

from 7 to 17, from 14 to 25, and from 13 to 24 

occurrences per year, respectively, rising from a total 

of 37 occurrences per year to 79 occurrences. If 

agricultural areas are established in wet puna 

ecosystems, the number of alluviums/avalanches, falls, 

landslides and huaycos would increase from 3 to 14, 

from 7 to 17, from 14 to 25, and from 13 to 24 

occurrences per year, respectively, increasing from a 

total of 37 occurrences per year to 80 occurrences. 

Regarding damages, considering the lethality and 

destruction indices of houses and roads in Table 2, and 

the predicted figures under the land use change 

scenarios, the average annual number of fatalities is 

expected to multiply by a factor of 2.8 and 2.82 (from 

4.6 to 12.9 and from 4.6 to 13), the number of houses 

destroyed would multiply by a factor of 2.4 (from 89.8 

to 215.2 and from 89.8 to 216.8), and the number of 

roads collapsed would multiply by a factor of 2.2 (from 

37 to 82.7 and from 37 to 83.2) if urban and 

agricultural areas are established in wet puna 

grasslands, respectively. 

 

Table 3 

Performance metrics of machine learning models in predicting annual 

landslide occurrence 
 

Model R2 RMSE 

Linear regression 0.80 6.90 

Gaussian processes 0.80 6.92 

Random Forrest 0.66 9.04 

Support Vector Machine 0.64 9.29 

 

Figure 8b and Table 5 show that if urban areas are 

established in dry puna grassland ecosystems, the 

number of alluviums/avalanches, falls, landslides and 

huaycos would increase from 1 to 19, from 1 to 19, from 

4 to 22, and from 7 to 25 occurrences per year, 

respectively, increasing from a total of 12 occurrences 

per year to 85 occurrences. If agricultural areas are 

established in dry puna grassland ecosystems, the 

number of landslides, falls, and mudflows would 

increase from 1 to 19, from 1 to 19, from 4 to 22, and 

from 7 to 25 occurrences per year, respectively, 

increasing from a total of 12 occurrences per year to 

86 occurrences. Regarding damages, considering the 

lethality and destruction indices of houses and roads 

in Table 2, and the predicted figures under the land 
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use change scenarios, the average annual number of 

fatalities is expected to multiply by a factor of 10.46 and 

10.53 (from 1.5 to 15.7 and from 1.5 to 15.8), the number 

of houses destroyed would multiply by a factor of 7.48 

and 7.55 (from 33.2 to 248.5 and from 33.2 to 250.8), 

and the number of roads collapsed would multiply by 

a factor of 7.33 and 7.40 (from 12.4 to 90.9 and from 

12.4 to 91.7) if urban and agricultural areas are 

established in dry puna grasslands, respectively. 

 

Model limitations 

The PISCO product, used for precipitation and tem-

perature, struggles to capture extreme precipitation 

events due to its spatial resolution of approximately 10 

km. This may not adequately reflect significant local 

variations in precipitation, which are key variables for 

accurate landslide prediction. Additionally, data inter-

polation based on unevenly distributed stations intro-

duces uncertainties, especially in less monitored areas. 

 

 

 
 

Figure 8. Comparative description of physical characteristics related to landslides in wet Puna grasslands (Pph) and dry Puna grasslands 

(Pps). 

 
 

Table 4 

Comparative prediction of landslide occurrence and damage when urban and agricultural areas are established in wet puna grasslands 
 

Land use Damages and losses Alluvium / avalanches Collapse Landslide Huayco Total 

Wet puna 

grassland  

Occurrences1 3 7 14 13 37 

Fatalities2 1.5 0.3 1.7 1.0 4.6 

Homes destroyed3 17.1 7.0 28.5 37.3 89.8 

Roads collapsed4 5.8 0.7 20.3 10.2 37.0 

Urban zone  

Occurrences 14 17 25 24 79 

Fatalities 7.2 0.9 3.0 1.9 12.9 

Homes destroyed 79.5 18.3 49.5 67.9 215.2 

Roads collapsed 27.0 1.9 35.3 18.6 82.7 

Aguircultural 

zone 

Occurrences 14 17 25 24 80 

Fatalities 7.2 0.9 3.0 1.9 13.0 

Homes destroyed 80.1 18.5 49.7 68.5 216.8 

Roads collapsed 27.2 1.9 35.4 18.7 83.2 
1 Average number of landslides per year; 2 Average number of landslide fatalities per year; 3 Average number of houses destroyed by landslides per year; 4 Average 

number of roads collapsed due to landslides per year. 

 



Scientia Agropecuaria 15(3): 333-348 (2024)                   Cerna-Cueva et al. 

-344- 
 

Table 5 

Comparative prediction of landslide occurrence and damage when urban and agricultural zones are established in dry Puna grasslands 

 

Land use Damages and losses Alluvium / avalanches Falls Landslide Huayco Total 

Dry puna 

grassland 

Occurrences1 1 1 4 7 12 

Fatalities2 0.4 0.0 0.4 0.6 1.5 

Homes destroyed3 4.7 1.0 7.3 20.2 33.2 

Roads collapsed4 1.6 0.1 5.2 5.5 12.4 

Urban zone 

Occurrences 19 19 22 25 85 

Fatalities 10.1 1.0 2.6 2.0 15.7 

Homes destroyed 111.9 20.4 43.4 72.8 248.5 

Roads collapsed 38.0 2.1 30.9 19.9 90.9 

Aguircultural 

zone 

Occurrences 19 19 22 25 86 

Fatalities 10.2 1.0 2.7 2.0 15.8 

Homes destroyed 113.1 20.5 43.8 73.4 250.8 

Roads collapsed 38.4 2.1 31.2 20.1 91.7 
1 Average number of landslides per year; 2 Average number of landslide fatalities per year; 3 Average number of houses destroyed by landslides per year; 4 Average 

number of roads collapsed due to landslides per year. 

 

The quality and coverage of landslide data, 

obtained from INDECI and SINPAD, are limited to 

recorded and documented events, which could 

underestimate the actual frequency of landslides, 

especially in remote areas. Another significant 

limitation is the use of annual averages for variables 

such as precipitation and temperature. Landslides 

occur at specific times and under specific conditions 

that cannot be fully represented by annual aver-

ages. This approach averages the dynamic variables 

for a given location and sums the occurrences in 

that area, but it does not reflect daily or seasonal 

variability that could be critical for understanding 

and predicting specific landslides. Model accuracy 

may be limited in areas with sparse or unrepre-

sentative data, such as remote areas without suffi-

cient weather stations or landslide records, where it 

could underestimate risk. 

 

Relevance for landslide risk management 

The model developed to predict the annual occur-

rence of landslides in high Andean ecosystems is 

useful primarily for long-term planning and risk 

management. It can help local authorities and 

planners assess risks under established land use 

scenarios and formulate mitigation policies based 

on annual average conditions. However, the model 

is not suitable for immediate emergency response, 

as it is not designed to make real-time operational 

decisions during specific events. In Peru, technical-

normative management instruments aim to guide 

and regulate the physical and spatial organization 

of human activities, such as Concerted Develop-

ment Plans, Land Development Plans, and Urban 

Development Plans. These plans include the defini-

tion of risk and environmental conservation areas. 

This study provides a detailed method for identify-

ing such areas. Additionally, it is important to note 

that the predictive models used in this study are 

more accurate in measuring potential hazards com-

pared to CENEPRED's methods. While CENEPRED 

estimates risk using an approach that prioritizes hi-

erarchical analysis and assumptions about potential 

damages, without directly linking hazardous events 

to actual damages, the models in this study achieve 

a direct connection between the hazardous 

phenomenon and the resulting damages. 

 

Relevance for the conservation of high Andean 

grasslands 

The study provides a detailed analysis of the rela-

tionship between high Andean grasslands and 

landslide occurrence, contributing directly to the 

objectives of Budget Program 0144: Conservation 

and Sustainable Use of Ecosystems for the Provision 

of Ecosystem Services. By identifying areas suscep-

tible to landslides and analyzing the contributing 

factors, this study provides information that can be 

used in the preparation of specialized studies for 

ecosystem conservation, implementation of land-

use planning processes, monitoring and supervision 

of ecosystem conservation, and oversight and 

enforcement of environmental legislation (MINAM, 

2019a). 

 

4. Conclusions 
 

The average annual occurrence of landslides in the 

wet puna, dry puna, agricultural, and urban areas of 

Peru between 2003 and 2016 is 175.36, with 96% of 

these occurring in human-impacted areas (agricul-

tural and urban zones), while only 4% occur in high 

Andean grasslands. 

The precipitation and slope thresholds for landslide 

occurrence are higher in high Andean grasslands 

compared to agricultural and urban areas. The 

most destructive landslides are alluviums or ava-

lanches, with mortality, housing destruction, and 

road collapse rates of 53, 589, and 200 per 100 
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events, respectively. Using principal component 

analysis with a 95% variance threshold, the depend-

ent variables for predicting annual landslide occur-

rence were reduced to up to 6% of the original 

variables (from 128 to 8 principal components), with 

precipitation and slope being the variables most 

associated with the principal components. The best 

performing machine learning models for predicting 

annual landslide occurrence were Linear 

Regression, Gaussian Processes, Random Forest, 

and Support Vector Machine, with R² coefficients of 

0.80, 0.80, 0.66, and 0.64, respectively. 

Our results show that more landslides have been 

recorded in agricultural or urban areas than in puna 

grasslands, with a mean number of occurrences 

increased by a factor of 2.1 in wet puna and 7.08 in 

dry puna. This increase in landslide occurrence in 

agricultural or urban zones raised casualties by a 

factor of 2.8 in the wet puna region and 10.5 in the 

dry puna, the number of houses destroyed 

increased by a factor of 2.4 in the wet puna and 7.51 

in the dry puna, and the number of roads destroyed 

increased by a factor of 2.2 in the wet puna region 

and 7.37 in the dry Puna. These results provide 

important insights into the potential benefits of 

conserving puna grasslands to mitigate risk, inde-

pendent of other risk factors (slope, soil type, or cli-

matic variability). However, these results heavily de-

pend on the landslide occurrence database, which 

could be biased towards reporting more landslides 

in more accessible areas, such as locations near 

roads or urban areas (Sobrevilla, 2019). To confirm 

the benefits of conserving puna grasslands for risk 

reduction, future studies should investigate the 

causal links between land cover type and landslide 

occurrence. 

It is recommended that future research extends the 

study to other ecosystems, analyzing similar ecosys-

tems in different regions of the world to compare 

results and trends. It is also important to explore 

causal links, investigating the underlying mecha-

nisms between land cover change and increased 

landslides. Additionally, developing more advanced 

predictive models and exploring more sophisticated 

machine learning models, such as deep neural net-

works, could improve the accuracy of predictions. 

Investigating daily or seasonal climatic variability is 

crucial to better understand landslide patterns in re-

lation to extreme events. Using high-resolution data 

can help improve prediction accuracy and capture 

more significant local events. 

In terms of policy formulation, the findings of this 

study are relevant for ecosystem conservation, 

land-use planning, disaster risk management, and 

the protection of life and property. The information 

provided can be used by decision-makers to de-

velop mitigation and preparedness strategies, 

guide land use, and protect communities from 

natural disasters. 
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