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Abstract 

The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on 

disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image 

processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) 

method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic 

Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized 

and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing 

essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, 

with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface 

designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect 

and manage diseases in rice crops. 
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1. Introduction 

Globally, rice constitutes a significant portion of the 

diet for more than half of the population. From 1994 

to 2019, Asia was the largest producer of rice, 

accounting for approximately 90.6% of the total 

production, followed by the Americas (5.2%), Africa 

(3.5%), Europe (0.6%), and Oceania (0.1%) (FAO, 

2019; Carcea, 2021). 

According to the Foreign Agricultural Service, 

global rice production in 2022/2023 reached 516.73 

million tons, with an annual growth of 1% projected 

for 2023/2024, reaching 522.65 million tons (USDA, 

2025). Additionally, among the top ten rice-

producing countries in 2024 were China (28%), 

India (26%), Bangladesh (7%), Indonesia (6%), 

Vietnam (5%), Thailand (4%), the Philippines (2%), 

Myanmar (2%), Pakistan (2%), and Cambodia (1%). 

Notably, approximately 86% of global rice produc-

tion came from predominantly Asian countries, 

while in the Americas, the leading producers were 

Brazil (1%) and the United States (1%) (USDA, 2025). 

On the other hand, global projections emphasize 

the necessity of increasing staple food production 

by 70% between 2005 and 2050 to ensure 

nutritional security, given the world’s population 

expansion (FAO, 2009). Projections specific to rice 

indicate a 26% production increase by 2035, 

particularly in Africa and Latin America, to meet the 

growing demand (Seck et al., 2012). 

In this way, several factors, including pests and 

diseases, pose significant threats to rice crops, 

resulting in substantial yield losses (Nakandakari, 
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2017; Savary et al., 2019). Diseases and pests 

account for approximately 30% of these losses 

(Savary et al., 2019). Moreover, susceptibility to 

infections throughout the growth stages leads to 

decreased productivity, increased production costs, 

and unmet demand, jeopardizing food security 

(Kawtrakul et al., 2015). 

Thus, in the event of an infection, it is important to 

promptly diagnose the type of rice disease so it can 

be controlled and treated on time. This ensures 

efficient and high-quality rice production while 

minimizing losses and negative impacts on yield. 

A correct diagnosis for appropriate treatment 

necessitates specialists with extensive experience to 

accurately identify the type of disease (Lu et al., 

2017). Consequently, less experienced young 

farmers may misdiagnose the problem, potentially 

leading to the application of incorrect pesticides 

(Sethy et al., 2020). 

For this reason, the advancement of technology 

and its application in agriculture has led to the use 

of digital technologies to monitor agricultural 

production. This integration has evolved, and 

agriculture is currently immersed in the era of 

Agriculture 4.0, also known as Digital Agriculture. 

This era is characterized by the incorporation of 

computer science and robotics, as well as the use of 

current technologies such as the Internet of Things, 

cloud computing, big data, and artificial intelligence 

to significantly enhance agricultural activities (Zhai 

et al., 2020). 

A literature review has revealed a growing interest 

in using artificial intelligence technologies, like 

Machine Learning (ML), across different areas of the 

production chain (Rodríguez et al., 2024a; 

Rodríguez et al., 2024b), and the agricultural sector 

has not been an exception (Rodríguez et al., 2022). 

This interest is due to their efficiency and 

effectiveness in decision-making, as well as their 

applicability for disease detection and classification 

across various crop types (Kartikeyan & Shrivastava, 

2021). 

Therefore, ML is a powerful technique that, when 

used correctly, can be highly efficient for 

developing models that produce reliable results 

(Rodríguez et al., 2024b). This makes the decision-

making process simpler and allows for conclusions 

to be reached in less time.  

Regarding the use of ML for disease identification 

in rice production, the literature review revealed 

that, in addition to these techniques, image pro-

cessing methods can be utilized to enhance certain 

features. Furthermore, the main ML techniques 

used include Logistic Regression (LR) (Feng et al., 

2020), Support Vector Machines (SVM) (Lu et al., 

2017; Feng et al., 2020; Tian et al., 2021; Sharma et 

al., 2022), Decision Trees (DT) (Sharma et al., 2022), 

ensemble methods such as extreme gradient 

boosting (Azim et al., 2021), Random Forest (RF) 

(Reddy et al., 2022; Sharma et al., 2022), AdaBoost 

(Kumar & Kannan, 2022), as well as Neural 

Networks and their variations (Sethy et al., 2020; 

Jiang et al., 2021; Elmitwally et al., 2022). 

On the other hand, regarding the application of 

these technologies for disease identification, it was 

observed that ML techniques were applied to iden-

tify around 20 diverse types of diseases (Rodríguez 

et al., 2022). However, the diseases that appeared 

most frequently were brown spot, blast, bacterial 

blight, and leaf smut (Lu et al., 2017; Feng et al., 

2020; Sethy et al., 2020; Azim et al., 2021; Jiang et 

al., 2021; Elmitwally et al., 2022), among others. 

In this context, this study aimed to apply image pro-

cessing techniques, such as segmentation, gamma 

correction, and the Stretched Neighborhood Effect 

Color to Grayscale (SNECG) method, as well as ML 

techniques to develop a predictive model for the 

early detection of diseases in rice fields. The images 

used in this study were sourced from secondary 

data, and various supervised ML techniques were 

applied and compared. 

The article is structured as follows: Section 2 pre-

sents the materials and methods used in this study. 

Section 3 describes the results and discussion, 

detailing the image processing methods and ML 

techniques applied. Finally, Section 4 provides the 

conclusions, followed by the references. 

 
2. Methodology 

The flowchart depicted in Figure 1 illustrates the 

methodological approach employed in the devel-

opment of this study, delineated into three principal 

steps, as explained below. 
 

2.1. Data collection 

The dataset for this study comprised images col-

lected from five types of rice diseases obtained from 

secondary sources (Mendeley, 2022; IPM, 2023; 

IRRI, 2023). The collected image dataset consisted 

of 1538 images in JPEG (joint photographic experts’ 

group) format, with an original resolution of 4160 

pixels in length and 1952 pixels in width. 

The dataset included images of five major rice dis-

eases: sheath blight (28.48%), rice blast (25.75%), 

leaf scald (18.60%), rice tungro (15.47%), and brown 

spot (11.70%). These images were systematically or-

ganized into separate folders based on the disease 

type. The labels for each class were generated using 

the folder structure, ensuring that all images within 

the same folder were assigned the same class label. 
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Additionally, to streamline computational efficiency 

during model development, the images were 

resized to a resolution of 128 × 128 pixels. 

 

2.2. Image preprocessing 

To capture rice disease-specific characteristics, var-

ious image processing methods such as threshold-

ing, gamma correction, and conversion to grayscale 

were applied, as illustrated in Figure 1. 
 

Thresholding 

A highly popular image segmentation technique is 

thresholding, which involves separating the fore-

ground from the background of the image by 

creating binary images (Nixon & Aguado, 2019; 

Rajinikanth et al., 2020).  

Image thresholding involves selecting a threshold T 

such that any pixel (x, y) satisfying f(x, y) > T can be 

termed an object pixel (Gonzales & Wintz, 2017). 

Among advanced thresholding techniques is opti-

mal thresholding with Otsu’s method, which aims to 

find an optimal value, T, for separating the object 

from the background by employing a generalized 

grayscale histogram, where the number of pixels at 

each gray level is divided by the total number of 

pixels in the image (Nixon & Aguado, 2019; 

Gonzales & Wintz, 2017). Gaussian smoothing was 

employed to remove noise from the images 

(Gonzales & Wintz, 2017). 

In the thresholding process, the probability 

distribution for the L gray levels of an image with 

dimensions M × N is provided by the mathematical 

formula in Equation 1: 

n
p

MN
=                                  (1) 

where the gray level ranges from 0 to 255, n

represents the number of pixels in the image with 

gray level , and MN = n0 + n1 + … + nL-1 denotes 

the total number of pixels. The threshold T = k (gray 

level) lies within the intensity range 0 < k < L – 1, 

dividing the image into classes c1 = [0, k] and c2 = 

[k + 1, L - 1].  Thus, given the threshold k, the 

probability of a gray level being classified into 

classes c1 or c2 is provided in Equations 2 and 3. 

( )1

0

k

P k p
=

=                            (2) 

( ) ( )
1

2 1

1

1
L

k

P k p P k
−

= +

= = −      (3) 

where P1 (k) is the probability of class c1 and P2 (k) is 

the probability of class c2. 

 

 
 

Figure 1. Methodological approach. 
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The average of gray levels for classes c1 and c2 is 

calculated as shown in Equations 4 and 5. 

Furthermore, the global mean of gray levels is 

calculated by Equation 6: 
 

1

01

1
( )

( )

k

m k p
P k =

=                (4) 

1

2

12

1
( )

( )

L

k

m k p
P k

−

= +

=            (5) 

1

0

L

Gm p
−

=

=                        6) 

where it must hold that P1 (k) m1(k) + P2 (k) m2(k) = 

mG and P1 (k) + P2 (k) = 1. 

Thus, the global variance of the gray level across all 

image pixels is computed by 2 ( )G k  (Equation 7), 

while the between-class variance is calculated by 
2 ( )B k  (Equation 8). These variance measures are 

then used to calculate ( )k  (Equation 9), which 

facilitates the evaluation of the effectiveness of the 

chosen threshold in separating the image 

components. 
 

1
2 2

0

( )
L

G Gm p
−

=

= −                  (7) 

   
2 22

1 1 2 2( ) ( ) ( ) ( ) ( )B G Gk P k m k m P k m k m = − + −    

(8) 
2

2

( )
( ) B

G

k
k





=                              (9) 

where the values of ( )k are within the range 

0 ( ) 1k  . In this way, the optimal threshold T 

= k* must satisfy Equation 10: 
 

2 * 2

0 1
( ) max ( )B B

k L
k k 

  −
=             (10) 

 

where 
2 *( )B k  maximizes the between-class 

variance (Nixon & Aguado, 2019; Gonzales & Wintz, 

2017). 

 

Gamma correction 

Gamma correction ( ) adjusts the variations in 

luminance levels between individual pixels in an 

image, thereby enhancing visual appearance and 

highlighting specific features (Gonzales & Wintz, 

2017). Thus, gamma correction in an image is 

calculated using the Equation 11:  

s cr=                            (11) 

where s allows for a non-linear transformation of 

the color levels in the RGB (red, green, blue) 

channels, and the variables c and   are positive 

constants (Nixon & Aguado, 2019). 
 

Conversion to grayscale 

Considering that an image is commonly 

represented in the RGB bands (Rafael et al., 2020; 

Gonzalez & Woods, 2018), the adjusted color 

images were simplified for processing through 

conversion to grayscale. 

A simple and popular method is linear projection 

f(x)GS = αR × R + αG × G + αB × B, where the values 

of αR, αG, αB are non-negative and satisfy the 

constraint αR + αG + αB = 1 (Kanan & Cottrell, 2012; 

Gonzalez & Woods, 2018). The simplest method for 

converting images to grayscale is the average 

method, where the coefficient values correspond to 

one-third of the original values of the RGB channels 

(Ma et al., 2015). 

In this study, the SNECG method was utilized, which 

is based on the pixel neighborhood approach and 

is distinguished by its adaptive characteristics that 

enhance the brightness, contrast, and details of the 

images (Lim % Isa, 2011). The SNECG method is 

obtained through the formula presented in 

Equation 12: 
* * *( )GS R G Bf X W R W G W B=  +  +           (12) 

where the coefficients WR, WG, and WB are 

estimated by averaging the coefficients TR, TG, and 

TB, which are obtained by summing the intensity 

levels of each RGB channel, as presented in 

Equations 13 and 14: 

R
R

R G B

T
W

T T T
=

+ +
, G

G

R G B

T
W

T T T
=

+ +
and 

B
B

R G B

T
W

T T T
=

+ +
     (13) 

1 1

0 0

M N

R

x y

T R
− −

= =

= , 

1 1

0 0

M N

G

x y

T G
− −

= =

=  and 

1 1

0 0

M N

B

x y

T B
− −

= =

=    (14) 

The modified values of the coefficients R*, G*, and 

B* determine the extended values (Lim and Isa, 

2011), which are calculated using the minimum and 

maximum values of the RGB channels, as presented 

in Equations 15 - 17. 
 

max max( )R R= , 
max max( )G G= and 

 

max max( )B B=                            (15) 

 

min min( )R R= , 
min min( )G G=  and 

 

min min( )B B=                             (16) 

min

max min

255
R R

R
R R

−
= 

−
, min

max min

255
G G

G
G G

−
= 

−

and  

min

max min

255
B B

B
B B

−
= 

−
             (17) 
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2.3. Training and validation of models 

In addition to image processing, this study was 

based on applying ML techniques due to their 

ability to identify complex patterns in high-

dimensional datasets (Marsland, 2015; Alpaydin, 

2021). ML is a subfield of artificial intelligence that 

uses computational and statistical techniques to 

create mathematical models that can recognize 

specific features in images (Jordan & Mitchell, 2015). 

Supervised ML classification techniques such as LR, 

DT, RF, Multilayer Perceptron (MLP), and SVM were 

used in this work. On the other hand, the optimal 

combination of hyperparameters for each model 

was obtained using the Random Search method. 

The image dataset was divided into 95% for model 

training using the 5-fold cross-validation method, 

with its optimal hyperparameter configuration 

obtained via random search optimization. On the 

other hand, due to the class imbalance in the 

collected dataset, the oversampling technique was 

employed in each subdivision. This was done to 

mitigate the inherent bias in the unbalanced data 

(Rahman et al., 2015). The remaining 5% of images 

were utilized for model validation, as illustrated in 

Figure 1. 
 

Logistic Regression 

A classic statistical technique that fits an "S"-shaped 

curve, akin to linear regression, is utilized. This fitted 

curve is employed to compute the probability that 

the output y predicted by the model belongs to one 

of the k classes (Alpaydin, 2021). The logistic 

function for models aimed at calculating the 

probability of two classes is presented in Equation 

18: 

0

0 0

1
( )

1 1

i i

i i i i

x

i x x

e
p x

e e

 

   

+

+ − +


= =

 + +

    (18) 

 

Where β0 and β1 are the parameters or coefficients 

of the model, which are calculated using the 

maximum likelihood method, and xi are the input 

variables (Alpaydin, 2021). 
 

Decision Trees 

The DT technique enables the construction of 

predictive models through a sequence of binary 

splits of the training dataset, structured with nodes 

and leaves. Specifically, in the context of 

classification trees, their construction involves an 

iterative process that begins with selecting the most 

significant feature from the dataset to form the root 

node (Alpaydin, 2021). Based on the root node, 

internal binary subdivisions occur, leading to the 

creation of internal nodes (t) until reaching the 

model’s leaves, where predictions are made 

(Marsland, 2015). These data subdivisions must 

satisfy ( )a b a b

t t t t tX X X X X =   = , conti-

nuing until a reduction in error is achieved at each 

leaf node (Alpaydin, 2021). 

The leaves are also known as predictors d(x), and 

their prediction performance can be evaluated 

using the Gini index, a measure of homogeneity 

aimed at reducing data impurities from the root 

node to the leaf nodes (Alpaydin, 2021; Marsland, 

2015). The Gini index represents a measure of total 

variance among K (k = 1, 2, …, K) classes (Gareth et 

al., 2013; Alpaydin, 2021; Marsland, 2015) and is 

calculated as shown in Equation 19: 

( ) ( )
1

1
K

tk tk

k

G p X p X
=

= −           (19) 

where ( )tkp X  denotes the probability that a 

proportion of training data in node t belongs to 

class k (Gareth et al., 2013). A small value of G 

indicates that predictor d(x)t consists of data from 

one class (Gareth et al., 2013; Alpaydin, 2021). 

Another method to evaluate the constructed tree’s 

performance is by assessing the quality of data split 

using entropy calculation (Alpaydin, 2021), shown in 

Equation 20: 

( ) ( )
1

log
K

tk tk

k

D p X p X
=

=     (20) 

Like the Gini index, the entropy value D will be small 

if ( )tkp X  is close to zero or one, indicating a high 

purity split (Gareth et al., 2013). Furthermore, the 

classification error rate, depicted in Equation 21, can 

be utilized to evaluate the accuracy of the final 

model, post-pruning using either entropy or the 

Gini index. 

( )1 max tk
k

E p X= +   
           (21) 

 

Multilayer Perceptron 

The MLP models the relationship between input 

signals (input variables) and the output signal 

(target variable). Its basic structure consists of three 

main layers: the input layer, one or more hidden 

layers, and the output layer (Alpaydin, 2021).  

The neurons in the input layer of the model receive 

the values to be processed, which flow through 

several hidden layers, considered the main 

computational drive. The output layer then 

performs the prediction or classification based on 

the information from the input layer (Khan et al., 

2022). The interconnected layers of the neural 

network use the backpropagation technique to 

enhance prediction accuracy. The gradient is 
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calculated using the error function with the neuron 

weights in this process. Additionally, each neuron in 

the model employs a nonlinear activation function 

(Alpaydin, 2021). 

The output of each neuron in the MLP specifically 

depends on the preceding neurons and the 

network weights, which can be represented by 

Equation 22: 

( ) ( )ij i if x w x = +                (22) 

where   is the activation function, making its out-

puts known as activations, xi are the input variables, 

wij are the synaptic weights, and 
0i iw =  is the 

bias (Alpaydin, 2021; Khan et al., 2022). 

 

Random Forest 

The RF technique is an extension of DT and is also 

known as one of the ensemble methods 

(Sheykhmousa et al., 2020; Gareth et al., 2013). This 

technique is characterized by its internal structure, 

which consists of a collection of classification 

models using DT, where each model is trained on a 

random subset of data (Sheykhmousa et al., 2020; 

Marsland, 2015). Each internal tree generated 

results in a class, this outcome is the class with the 

highest frequency (Belgiu & Drăguţ, 2016; Gareth et 

al., 2013). 

In the RF, the L classification trees (f 1(x), f 2(x), …, f 
L(x)) trained are used to predict the final class f(x) 

(Belgiu & Drăguţ, 2016; Sheykhmousa et al., 2020). 

Specifically, f(x) is obtained through majority voting 

among the L classifiers (Belgiu & Drăguţ, 2016; 

Alpaydin, 2021). 

 

Support Vector Machines 

The SVM is noted for its efficiency with high-

dimensional data, even when the number of 

dimensions exceeds the number of instances in the 

dataset (Marsland, 2015). This technique maps the 

input data into a higher-dimensional nonlinear 

feature space to find a hyperplane that maximizes 

the margin between classes by minimizing the 

distance between them (Islam et al., 2017; 

Sheykhmousa et al., 2020). 

For constructing binary models, the classifier is 

obtained by solving a regularization problem that 

maximizes the margin between classes through the 

minimization of the associated objective function, 

as depicted in Equation 23 and 24: 

2

1

1
min

2

l

i kf H
i

C f


=

+             (23) 

subject to: 

( ) 1 , 0 1,2, ,i i i iy f x i l  −   =  (24) 

where xi and yi denote the training data and labels, 

f(x) represents the classifier, C is a constant 

representing the regularization factor, and 
i  are 

slack variables (Islam et al., 2017). 
 

Evaluation and validation metrics 

Evaluating and validating predictive models is 

crucial, as it helps measure the accuracy and overall 

performance of the models by assessing their error 

rates and efficiency. The cross-validation technique 

enables the evaluation of a model’s robustness by 

preventing overfitting and helping to estimate its 

performance in practical applications (Marsland, 

2015; Alpaydin, 2021). In its application, the training 

dataset is randomly divided into k equally sized 

subsets (5-fold). 

In this way, although there are various evaluation 

metrics available, no single standard metric has 

been established (Rodriguez et al., 2022). The 

formulas for the evaluation metrics adopted, based 

on the confusion matrix, are presented below in 

Equations 25 to 30. 
 

TP TN
accuracy

TP TN FP FN

+
=

+ + +
   (25) 

TP
recall

TP FN
=

+
       (26) 

TP
precision

TP FP
=

+
             (27) 

1 2
precision recall

F
precision recall


= 

+
    (28) 

FP
FPR

FP TN
=

+
                 (29) 

TP
TPR

TP FN
=

+
            (30) 

 

The Matthews correlation coefficient (MCC) was 

used to measure the quality of the classifications 

generated by the models (Zhu, 2020). The MCC is 

calculated as depicted in Equation 31. 
 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

 − 
=

+ + + +

  

(31) 

The MCC value varies between {+1, -1}, with values 

close to +1 indicating perfect classification and 

those near -1 indicating perfect misclassification. 

Conversely, a value of 0 indicates random 

prediction, signifying the model’s inability to predict 

(Chicco, 2020). 

Additionally, the McNemar test was utilized to 

validate the selection of the best final model by 

comparing and analyzing the frequency of errors or 

successes of each one. Hence, the comparison of 
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models is grounded on the null hypothesis that 

both models possess the same error rate (H0: 

errorM1 = errorM2). The McNemar statistic (X2) is 

calculated according to Equation 32. 
 

( )
2

1 22

1 2

1M M

M M

error error
X

error error

− −
=

−
         (32) 

The null hypothesis is rejected at a significance level 

of α if the value of X2 is greater than Xα,1 (Alpaydin, 

2021). 

 

3. Results and discussion 

The optimal threshold values of the analyzed 

images per class showed a close variation within 

their value ranges. Figure 2 (A-B) illustrates the 

distribution of the optimal threshold values 

obtained for each image per class. 

For the brown spot class, the threshold value k* 

varied between 103 and 149. For the leaf scald class, 

the range was between 105 and 147, while for rice 

blast, it ranged between 104 and 152. In the case of 

rice tungro, the threshold spanned from 105 to 149, 

and for the sheath blight class, it varied between 102 

and 149 (Figure 2). Additionally, a gamma value of 

γ = 0.65 was utilized in the gamma correction 

method. Figure 2 (C) displays the curve of color 

levels of individual pixels corrected with the gamma 

value considered, resulting in brightness adjust-

ment of the dataset images. Improving the visual 

appearance of the images through thresholding 

and gamma correction methods emphasized 

specific characteristics of rice leaves, such as the 

lesions caused by the evaluated diseases. 

The application of the SNECG method was chosen 

because, unlike the average method, SNECG 

demonstrated superior performance in the conver-

sion of grayscale images, effectively capturing the 

inherent characteristics related to the color of each 

lesion associated with several types of diseases 

(Figure 3A). 

The SNECG method enabled a more detailed 

capture of the brightness and characteristics of 

each color image during the conversion to 

grayscale, as shown in Figure 3 (B). 

Next, the Table 1 presents the labels and the 

number of images per class for the training and 

validation processes. 
 

Table 1 

Dataset division for training and validation 
 

Class Label Training Validation 

Leaf scald 0 271 15 

Rice blast 1 375 21 

Brown spot 2 173 7 

Sheath blight 3 413 25 

Rice tungro 4 229 9 

 

Among the training outcomes, each model 

exhibited varying performance based on the results 

of 5-fold cross-validation. Figure 4 presents the 

performance metrics, including accuracy, recall, 

precision, and F1-score. 
 

 
 

Figure 2. Distribution of optimal threshold values and color curve generated with gamma correction. 
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Figure 3. (A) Color-processed images and grayscale images produced using the average method and the SNECG method, along with (B) 

original and processed images using thresholding, gamma correction, and the SNECG method for each type of disease. 

 

The performance analysis of the models trained 

using 5-fold cross-validation showed that all tested 

techniques achieved metrics above 78%, which can 

be considered acceptable. Figure 5 illustrates the 

mean values for the evaluation metrics FPR, TPR, 

and MCC, along with their corresponding confi-

dence intervals (95% CI) at a 5% significance level. 

Upon inspection of the model training results 

(Figures 4 and 5), it was observed that models 

generated using SVM and RF techniques achieved 

the highest number of correctly classified images. 

To facilitate the comparison of error metric results 

for each evaluated technique, Table 2 presents the 

mean values of the evaluation metrics obtained 

during model training. 

As observed in Table 2, for the metrics of accuracy, 

precision, recall, F1-score, and TPR, all tested 

techniques exceeded 82.29%, while the FPR metric 

presented values below 4.30%. The results 

indicated that the models that used MLP, DT, and 

LR exhibited the lowest values in the evaluated 

performance metrics. Concerning the model 

trained with the LR technique, it was observed that 

it presented values similar to those obtained by 

Feng et al. (2020). 

Additionally, the models trained with RF and SVM 

techniques achieved the best error metric values, 

with very close values to each other compared to 

models trained with other techniques (Table 2). 

The MCC was used to measure the quality of the 

predictions of each trained model. It was found that 

all tested models obtained a mean MCC value 

above 78.05%. The MCC results demonstrated that 

models using RF (83.84%, with CI95%: 88.41 – 

79.28) and SVM (83.58%, with CI95%: 88.14 – 79.02) 

showed the best prediction performance compared 

to the models using MLP (80.74%, with CI95%: 

85.67 – 75.82), DT (78.76%, with CI95%: 82.95 – 

74.57), and LR (78.05%, with CI95%: 84.36 – 71.74). 

Based on the results obtained during the cross-

validation training stage, the models using RF and 

SVM were retrained with the remaining 95% of the 

dataset to validate and select the final model. Table 

3 presents the optimal hyperparameters for each 

model trained with each final ML technique. 
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Figure 4. Performance metrics for each fold of the cross-validation. 

 

 

 
 

Figure 5. Mean values of the evaluation metrics FPR, TPR, and MCC. 
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Table 2 

Mean values of evaluation metrics during models training 
 

Metrics 

Models 

MLP 

(CI95%) 

SVM 

(CI95%) 

RF 

(CI95%) 

DT 

(CI95%) 

LR 

(CI95%) 

Accuracy 
84.87% 

(88.61 - 81.14) 

87.05% 

(90.63 - 83.47) 

87.35% 

(90.74 - 83.95) 

83.37% 

(86.61 - 80.13) 

82.82% 

(87.68 - 77.96) 

Precision 
84.87% 

(87.21 - 82.54) 

87.17% 

(89.78 - 84.55) 

89.11% 

(92.16 - 86.06) 

83.03% 

(86.10 - 79.96) 

82.78% 

(87.55 - 78.02) 

Recall 
84.59% 

(89.19 - 79.99) 

86.85% 

(90.82 - 82.88) 

86.15% 

(91.64 - 80.66) 

82.89% 

(87.68 - 78.10) 

82.29% 

(87.29 - 77.28) 

F1 
84.45% 

(87.67 - 81.23) 

86.85% 

(90.49 - 83.22) 

87.25% 

(90.80 - 83.70) 

82.80% 

(86.88 - 78.73) 

82.38% 

(87.08 - 77.68) 

FPR 
3.78% 

(4.71 - 2.85) 

3.22% 

(4.09 - 2.35) 

3.17% 

(4.06 - 2.28) 

4.16% 

(4.96 - 3.36) 

4.30% 

(5.51 - 3.08) 

TPR 
84.87% 

(88.61 - 81.14) 

87.13% 

(90.63 - 83.64) 

87.34% 

(90.90 - 83.78) 

83.37% 

(86.61 - 80.13) 

82.82% 

(87.68 - 77.96) 

MCC 
80.74% 

(85.67 - 75.82) 

83.58% 

(88.14 - 79.02) 

83.84% 

(88.41 - 79.28) 

78.76% 

(82.95 - 74.57) 

78.05% 

(84.36 - 71.74) 

 

 

 
 

Figure 6. Confusion matrix for the validation of the trained model with SVM and RF. 

 

Considering that model validation was conducted 

using 5% (77) of the images, Figure 6 (A) presents 

the confusion matrix of classifications made with the 

SVM model, demonstrating that the model cor-

rectly classified 87.01% of the images. Figure 6 (B) 

presents the confusion matrix for the RF model val-

idation, demonstrating that the model developed 

using this technique correctly classified 88.31% of 

the images. This technique exhibited behavior 

closely resembling the results obtained with SVM. 
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Table 3 

Hyperparameters of the best ML models 
 

Model Hyperparameter Description Parameter 

RF 

n_estimators Number of classification trees. 128 

max_features Maximum number of features used to split a node. sqrt 

criterion Function to measure the quality of the split. gini 

min_samples_split Minimum number of features in a node before splitting. 2 

min_samples_leaf Minimum number of features in a leaf node. 1 

bootstrap Sampling method for constructing the trees. False 

SVM 

C Regularization parameter. 125 

decision_function Decision function. ovr 

max_iter Maximum iteration limit. -1 

kernel Kernel function. rbf 

gamma Kernel coefficient. scale 

 
The McNemar test results (Table 4) indicated no 

significant differences between the errors of the 

models. These findings suggested the need for a more 

detailed evaluation to select the final model. 
 

Table 4 

Results of the McNemar test in the validation process 
 

Models X2 X0,05,1 Description 

RF 
0.001 3.84 Accept H0 

SVM 
 

The metrics results of both models were remarkably 

similar; however, the RF model exhibited higher 

precision and accuracy exceeding 88%, which outper-

formed the SVM technique (Table 5). Additionally, the 

Matthews correlation coefficient indicated that the RF 

model achieved better performance, slightly surpass-

sing the SVM model with a coefficient close to 85%. 
 

Table 5 

Evaluation metrics results with validation images 
 

Models SVM RF 

Accuracy 87.01% 88.31% 

Precision 86.84% 86.43% 

Recall 85.13% 88.07% 

F1 85.61% 87.05% 

TPR 87.01% 88.31% 

FPR 3.25% 2.92% 

MCC 83.13% 84.74% 

Contrasting these results with some observed in the 

literature, it is noteworthy that the studies by Tian et al. 

(2021), Azim et al. (2021), and Feng et al. (2020) 

developed models using ML techniques that achieved 

lower accuracy than the SVM and RF techniques used 

in this study. 
 

Moreover, it is important to note that one of the main 

differences between those studies and this research is 

that their models were developed to classify only one 

to three types of rice diseases, while this work 

evaluated five types of diseases. Table 6 presents the 

types of diseases considered by various authors for the 

development of classification models. ML techniques 

have been widely applied to the identification of 

various rice diseases. Among these, the most 

frequently studied include brown spot, blast, bacterial 

blight, and leaf smut (Lu et al., 2017; Feng et al., 2020; 

Sethy et al., 2020; Azim et al., 2021; Jiang et al., 2021; 

Elmitwally et al., 2022). However, when comparing the 

findings of these studies with the results of the present 

investigation, no prior research was identified that 

comprehensively evaluated the diseases sheath blight, 

tungro, blast, leaf scald, and brown spot in an 

integrated manner.  

 
Table 6 

Types of diseases analyzed in various published research 
 

Research 
Rice diseases 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) 

Lu et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓      

Sethy et al. (2020) ✓  ✓    ✓    ✓     

Jiang et al. (2021)   ✓    ✓     ✓    

Tian et al. (2021) ✓               

Azim et al. (2021)   ✓    ✓     ✓    

Upadhyay y Kumar (2021)   ✓         ✓    

Feng et al. (2020) ✓    ✓  ✓         

Sharma et al. (2022) ✓  ✓    ✓    ✓     

Latif et al. (2022) ✓  ✓    ✓      ✓ ✓  

Kumar y Kannan (2022)   ✓    ✓     ✓    

Rallapalli y Saleem (2021) ✓  ✓    ✓     ✓   ✓ 

Elmitwally et al. (2022)   ✓    ✓     ✓    

Akyol (2023)   ✓    ✓     ✓    

Reddy et al. (2022) ✓  ✓            ✓ 

NOTE. (a): Blast, (b): False smut, (c): Brown spot, (d): Bakanae, (e): Sheath blight, (f): Sheath rot, (g): Bacterial blight, (h): Bacterial sheath brown rot, (i): Seeding 

blight, (j): Bacterial wilt, (k): Tungro, (l): Leaf smut, (m): Leaf scald, (n): Narrow brown spot, (o): Hispa 
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Finally, Figure 7 illustrates an interface developed by 

integrating the best model with RF to diagnose the 

type of disease present in the rice leaf. The devel-

oped interface allows for observing the classifica-

tion result, in addition to the probability that the leaf 

presents the identified disease. In Figure 7 (A), the 

identification of brown spot disease with a 97.66% 

probability of accuracy, and in Figure 7 (B), the 

identification of sheath blight disease with a 75.78% 

probability of accuracy. 

 
4. Conclusions 
 

Rice is one of the most widely consumed foods 

globally, and its production faces significant 

challenges due to the risk of infections from pests 

and diseases that can negatively impact efficiency 

and quality. This study applied various image 

processing methods, such as thresholding, gamma 

correction, and grayscale conversion using the 

SNECG method, to characterize disease lesions on 

rice leaves. Additionally, ML techniques were 

explored to develop a predictive model for the early 

detection of crop issues.  

Five ML techniques were applied, including RF, LR, 

MLP, DT, and SVM, with cross-validation and 

random search for hyperparameter optimization. 

The results showed that all models correctly 

classified more than 80% of the images; however, 

the models with the best performance during 

training were the SVM and RF models. Validation of 

the top models indicated that the classifications 

made with the RF model were more accurate, 

making it the final selected model, with an accuracy 

exceeding 88%. 

These results highlight that the integration of 

advanced image processing methods with ML tech-

niques enables the development of highly efficient 

classification models and opens new possibilities for 

the precise detection of specific issues in rice crops, 

leading to a significant improvement in their pro-

duction.
 

 
 

Figure 7. Interface for the identification of diseases in rice leaves. 
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Moreover, by facilitating more effective manage-

ment of agricultural diseases, these emerging tools 

play a crucial role in strengthening food security 

through more informed and proactive agricultural 

practices. This approach with ML models can not 

only optimize the management of agricultural 

resources but also promote more responsible and 

effective practices in food production, thereby 

fostering a more robust and secure agricultural sys-

tem for future generations. 

Finally, for future research, the application and 

comparison of other ML techniques are recom-

mended, as well as the integration of other types of 

diseases affecting rice crops, to develop a more 

robust tool. 
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