© Departamento Académico de Biología, Universidad Nacional Agraria La Molina, Lima – Perú.

Aceptado: 30/06/2024 Publicado en línea: 31/07/2024 ú. ARTICULO ORIGINAL

Presentado: 12/06/2023

DOI: https://doi.org/10.21704/rea.v23i1.2036

COMUNIDAD DE AVES COMO SISTEMA COMPLEJO ADAPTATIVO: PATRONES ESPACIO-TEMPORALES EN UN AGROECOSISTEMA DE LOS ANDES PERUANOS

BIRDS COMMUNITY AS A COMPLEX ADAPTIVE SYSTEM: SPATIO-TEMPORAL PATTERNS IN AN PERUVIAN ANDEAN AGROECOSYSTEM

Julio Salvador Rodriguez^{1,2}, Zulema Quinteros Carlos^{1,3} y Edgar Sánchez Infantas^{1,4}

Resumen

La interpretación de las comunidades biológicas como sistemas complejos adaptativos, pretende evidenciar sus patrones ecológicos a diferentes escalas y sus relaciones ambientales. En este trabajo se analizaron los patrones de diversidad de especies y de los estados alternativos de la comunidad de aves en un agroecosistema andino ubicado en la vertiente centro-occidental de los Andes peruanos (Distrito de Cajatambo, Lima - Perú), a una escala temporal y espacio-temporal. Durante los años 2015 y 2016 se realizaron 24 transectos, ubicados en siete formaciones vegetales a lo largo de dos ecorregiones, entre 2 700 y 4 600 msnm, abarcando las épocas secas y lluviosas. Los patrones temporales no mostraron diferencias en la diversidad de especies entre las épocas. Se determinó la existencia de un solo estado alternativo temporal; sin embargo, se evidenciaron cambios en su composición de especies entre épocas lluviosas y secas, sugiriendo una mayor redundancia funcional en la época seca que la época lluviosa por la variabilidad temporal de granívoros-insectívoros pequeños. Con respecto a los patrones espacio-temporales, las formaciones vegetales de bosques de Polylepis (queñual), algunos matorrales y campos agrícolas presentaron altos valores de diversidad de especies. Además, se determinaron ocho estados alternativos asociados a una o más formaciones vegetales y a la estacionalidad. Finalmente, se evidenció una mayor proporción de cambios de regímenes de los estados alternativos comunitarios ubicados en la ecorregión Meso-Andina a diferencia de la ecorregión Puna-Húmeda, lo cual sugiere que estas comunidades de aves poseen una mayor autoorganización y adaptabilidad frente a la estocasticidad ambiental.

Palabras clave: estados alternativos, diversidad de especies, aves altoandinas, Cajatambo.

Abstract

The interpretation of biological communities as complex adaptive systems aims to demonstrate their ecological patterns at different scales and their environmental relationships. In this survey, we analyzed species diversity and alternative stable states patterns of the bird community in an Andean agroecosystem located on the central-western slope of the Peruvian Andes (Cajatambo District, Lima - Peru), on a temporal and spatio-temporal scale. We evaluated their bird community through 24 line transects, located in seven plant formations along two ecoregions, between 2 700 and 4 600 masl, during the dry and rainy seasons of 2015 and 2016. The temporal patterns did not show differences in species diversity between seasons. We determined the existence of a single temporary alternative stable states; however, we evidenced changes in their species composition between dry and rainy seasons, suggesting a greater functional redundancy in dry season than rainy season due to temporal variability of small granivore-insectivore species. Regarding the spatio-temporal patterns, the plant formations of Polylepis forests, some scrubs and agricultural lands presented high values of species diversity. In addition, we determined eight alternative stable states in relation to one or more plant formations and seasonality. Finally, a higher proportion of regime changes was found in the community alternative stable states located in the Meso-Andean ecoregion as opposed to the Puna-Humid ecoregion, which would suggest that this bird community has a greater selforganization and adaptability in the face of environmental stochasticity.

Key words: alternative steady states, species diversity, high Andes birds, Cajatambo.

Introducción

Las comunidades biológicas se consideran sistemas porque las especies coexisten e interactúan en un espacio-tiempo determinado (partes e interacciones), en su sentido más clásico, que a su vez sus dinámicas evolucionan y cambian con el tiempo (Begon *et al.*, 2006; Sebastián-Gonzáles *et al.*, 2013). Estas últimas características son propias de un sistema adaptativo

complejo debido a su capacidad para generar patrones emergentes a través de la auto organización de sus subsistemas y adaptación a lo largo del tiempo, resultado de procesos evolutivos (Kay *et al.*, 1999; Earls, 2006; Cumming, 2011). A partir de esta capacidad inherente, estos tipos de sistemas evidencian patrones peculiares tales como múltiples estados alternativos o atractores, anidamiento de subsistemas,

cambios poco predecibles, comportamientos no lineales, entre otros (Kay et al., 1999).

Estos patrones comunitarios, que dependen de la historia de ensamblaje de especies, pueden ser expresados a través de la diversidad y la estructura comunitaria. La diversidad de especies es el resultado de procesos de selección y adaptación mutua, así como de la persistencia de la composición de especies dentro de un ecosistema (Margalef, 2002). Un caso particular es la diversidad beta (o similitud de la estructura entre sitios), que evidencia el número efectivo de comunidades locales distintas de una región, es denominado como estados alternativos (Fukami & Nakajima, 2011). Estos estados alternativos tienden a permanecer dentro de un dominio determinado debido a ciertas combinaciones de parámetros que el sistema puede experimentar (Beisner et al., 2003; Cumming, 2011). Mediante estos patrones se pueden analizar en diferentes escalas espaciales y temporales que permitan una exploración de los mecanismos relacionados con su distribución, discutir posibles tendencias y establecer conjeturas ecológicas (Begon et al., 2006; Maestre & Escudero, 2008).

Los estudios de comunidades biológicas, desde el enfoque de sistemas complejos adaptativos, se han realizado generalmente en comunidades acuáticas donde están dominadas por las condiciones del agua (Petraitis & Dudgeon, 2004; Fung et al., 2011; Sánchez & Quinteros, 2017) y en comunidades vegetales asociadas a efectos del uso de suelos (Westoby et al, 1989; Laycock, 1991), con la finalidad estados alternativos reconocer sus comportamientos complejos de las comunidades biológicas a través del tiempo. En el caso de las aves terrestres, aunque no se han experimentado estos estudios desde esta perspectiva, podrían aportar conjeturas sobre los cambios de la estructura en la fauna en ecosistemas terrestres. Las aves serían buenos indicadores de cambios ambientales debido a su selección espacial y temporal de hábitats idóneos con respecto a las condiciones ambientales utilizadas como áreas de refugios, anidación y alimentación de aves (Cody, 1985, citado por Gibbons et al., 2016; Villegas & Garitano-Zavala, 2008). Asimismo, la alta diversidad y abundancia de aves en los ecosistemas altoandinos y la vasta información sobre su biología e historia natural de la mayoría de especies de aves (Fjeldså & Krabbe, 1990; Billerman et al., 2022) ayudan a plantear las interacciones con su medio.

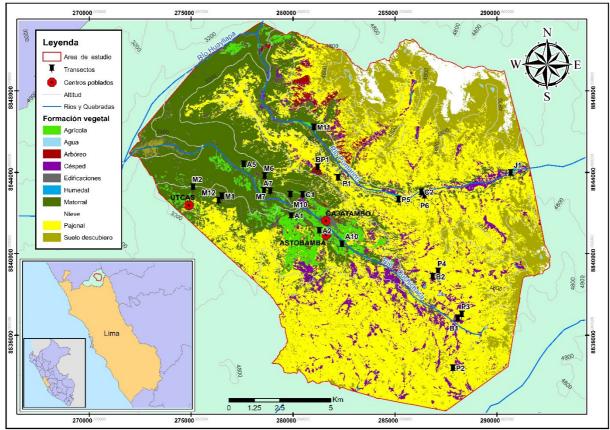
En ese sentido, la presente investigación tuvo por objetivo principal reconocer las características de un sistema complejo adaptativo en la comunidad de aves a través de sus patrones espacio-temporales en un agroecosistema de la vertiente centro-occidental de los Andes (distrito de Cajatambo, provincia Cajatambo – Lima). El análisis se realizó a nivel temporal y espaciotemporal, a través de la diversidad y estados alternativos de la comunidad de aves, desde la

perspectiva ecosistémica de los estados alternativos (cambio de régimen del sistema en respuesta a cambios en los parámetros del paisaje) según Beisner *et al.* (2003). La determinación de los patrones ayudará a sugerir procesos ecológicos importantes para la organización de las comunidades de aves, obtenidos desde el enfoque de sistemas complejos adaptativos.

Materiales y métodos

Estudio de caso

El estudio de caso está ubicado en el distrito de Cajatambo, perteneciente a la provincia de Cajatambo del departamento de Lima / Perú, al noreste de la ciudad capital (10°28' S, 76°59' O). Posee un área aproximada de 246.37 km² y una variación altitudinal de 1 950 hasta 5 600 msnm, dentro de las cuencas principales del distrito, que son: Cuchichaca y Pumarinri. El distrito colinda al norte con la Zona Reservada Cordillera Huayhuash y el Área de Conservación Privada Huayllapa. El clima del distrito puede definirse por época lluviosa (diciembre - abril) y época seca (mayo noviembre), y por cuatro tipos climáticos como lluvioso con otoño e invierno secos - frío, semiseco con otoño e inviernos secos; semiseco con invierno seco frío y templado; semiárido con invierno seco templado (SENAMHI, 2020). El área de estudio está presente en 2 de 15 ecorregiones, según Britto (2017): "Meso-Andina", ubicado en las vertientes occidentales, laderas de valles interandinos y el altiplano, entre 2 500 a 3 800 msnm; y "Puna Húmeda-Seca", incluye la franja andina de Arequipa a La Libertad, entre 3 800 y 4 200 msnm. En cuanto a las formaciones vegetales, se establecieron hasta 10 tipos, que destacan por su extensión el pajonal, los matorrales y campos agrícolas.


Los agroecosistemas del distrito de Cajatambo atraviesan cambios de cobertura vegetal por abandono, dado que la tendencia de las actividades agropecuarias no intensivas va en descenso en las áreas rurales (Quinteros & Sánchez, 2017). Walsh Perú (2009) reconoce abandonos de tierras agrícolas en las laderas del distrito, probablemente relacionado a diferentes procesos sociales y económicos que atravesó el distrito en las últimas décadas (Miranda, 2011). Este escenario permitió continuar las dinámicas naturales en las coberturas vegetales, tanto de persistencia y retorno (Castro, 2019), expresados en el desarrollo de la diversidad vegetal (y por extensión a otros grupos biológicos), en tanto las actividades humanas lo limite (Quinteros & Sánchez, 2017).

Variables de la comunidad de aves

El registro de aves fue por observación directa mediante el método de transectos con franjas limitadas a 30 m en ambos lados y con una longitud aproximada de 500 m, considerando evitar los sesgos metodológicos como, por ejemplo, las condiciones atmosféricas extremas, el cambio de hábitat, la velocidad y el esfuerzo del muestreo (Bibby *et al.*, 1992). En cada evaluación, se realizaron 24 transectos

muestreados durante dos años: lluviosa y seca de los años 2015 y 2016. La cantidad de muestras fue determinada a partir de la delimitación de las formaciones vegetales, y sus respectivas superficies en el área de estudio, mediante el uso de un muestreo estratificado con afijación proporcional al área. En ese sentido, cada transecto fue circunscrito a las principales

formaciones vegetales (Agrícola "A", Matorral "M", Pajonal "P", Césped "C", Bofedal "B", Juncal "J" y Bosque de *Polylepis* "BP"), Figura 1. Las abundancias relativas de las especies fueron determinadas por el Índice de Abundancia Relativa al Espacio (IARE), como número de individuos observados en cada 100 m (Ouinteros *et al.*, 2002).

A: agrícola, B: bofedal (humedal), BP: bosque de Polylepis (arbóreo), C: césped, J: juncal, M; matorral, P: pajonal. Fuente: Arnao (en prensa).

Figura 1. Ubicación del área de estudio y las estaciones de muestreo asociados a las formaciones vegetales.

Análisis de datos

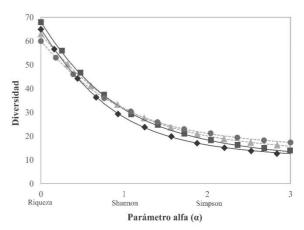
El análisis de los patrones temporales se realizó mediante los datos totales de cada evaluación (Iluviosa 2015, seca 2015, lluviosa 2016, seca 2016), sin considerar la identificación de los transectos; mientras que, los patrones espacio-temporales se consideraron los datos de cada transecto según evaluación. Estos patrones fueron analizados a partir de la diversidad de especies y los estados alternativos comunitarios, según nivel de análisis:

La diversidad temporal fue comparada con los perfiles de diversidad de Renyi de cada evaluación. Estos perfiles muestran gráficamente las principales familias de índices de diversidad ordenadas según su sensibilidad a las especies raras hasta las dominantes mediante el parámetro α , los cuales tienen relación con los principales índices de diversidad como la riqueza (parámetro $\alpha = 0$), Shannon (parámetro $\alpha = 1$) y

Simpson (parámetro $\alpha=2$), y permite una comparación visual del comportamiento de las diversidades de acuerdo al mencionado parámetro α (Tóthmérész, 1995; Hammer, 2019). La diversidad espacio-temporal fue analizada por la relación del promedio del índice de diversidad Inversa de Simpson y su coeficiente de variación temporal de todos los transectos, modificando el método de Véliz *et al.* (2002), al reemplazar el índice de Shannon-Wiener. El resultado de este análisis fue un gráfico de dispersión que permite interpretar patrones de la diversidad espacial a nivel de transecto y sus cambios a través del tiempo (Figura 5).

Los estados alternativos comunitarios fueron determinados a partir de Análisis de Conglomerados (índice de Bray-Curtis) y Análisis de Componentes Principales (ACP), contrastado por la prueba de Análisis de Variancia Multivariado No Paramétrico (NP-MANOVA) para confirmar estadísticamente la

separación de las agrupaciones, de acuerdo a la metodología que proponen Sánchez & Quinteros (2017), incluyendo la corroboración del supuesto de Homogeneidad de Dispersión Multivariada ("Permutation test") con el paquete "vegan" (Oksanen & Minchin, 2020). Asimismo, se proponen especies indicadoras a las que más contribuyen a la formación del estado alternativo, mediante el análisis de Porcentaje de Similitud (SIMPER). Estos análisis fueron realizados en el programa estadístico PAST 3.25 (Hammer, 2019).


Adicionalmente, el análisis espacio-temporal se representó mediante un Modelo de Estado-Transición que muestra de manera cuantitativa y gráfica las dinámicas de una comunidad biológica, reconociendo permanencias y cambios (reversibles e irreversibles) entre sus estados alternativos (Westoby et al., 1989). herramienta se determinaron las probabilidades de cambio y permanencia de estados alternativos, como sugiere Malpartida (2015), considerando como unidad de evaluación cada transecto y sus clasificaciones de estado alternativo a través del tiempo. El modelo de Estado-Transición de las comunidades de aves fue representado con los estados alternativos de la comunidad de aves y sus probabilidades de cambio con polígonos y flechas, respectivamente (Figura 2).

Resultados

Se registraron 97 especies de aves pertenecientes a 27 familias de 12 órdenes. Las especies con más IARE promedio en todas las evaluaciones fueron *Zonotrichia capensis* y *Geospizopsis plebejus*, con 0.5726 ind/100 m y 0.5620 ind/100 m por evaluación, respectivamente (Tabla 1).

Análisis de patrones temporales

La diversidad temporal no presentó diferencias entre las cuatro evaluaciones debido al entrecruzamiento de los perfiles de diversidad (Tóthmérész, 1995), aunque existió una tendencia de mayor diversidad por las especies raras ($\alpha=0$) y por dominancia de especies ($\alpha=2$) en las épocas secas y lluviosas, respectivamente (Figura 2). La diversidad por dominancia es explicada por las altas abundancias relativas de individuos juveniles y adultos de especies gregarias en las épocas secas que afectan inversamente en los valores de diversidad.

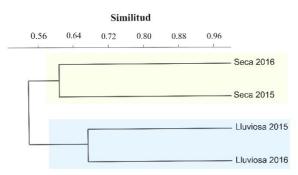
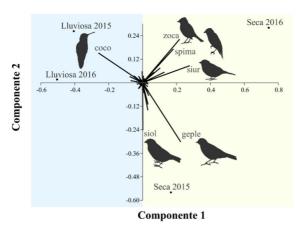

Triangulo = lluviosa 2015, cuadrado = seca 2015, círculo = lluviosa 2016, rombo = seca 2016. Parámetro α relacionado a los principales índices de diversidad.

Figura 2. Perfil de diversidad temporal de Renyi en las diferentes evaluaciones.


A partir del análisis de conglomerados (Figura 3) se evidenciaron dos posibles estados alternativos comunitarios temporales asociados a las épocas lluviosas y secas; sin embargo, no registraron diferencias significativas por la prueba NP-MANOVA (F_{Bray-Curtis} = 2.284, p-valor _{Bray-Curtis} = 0.340). Este resultado estadístico exploratorio evidenció la variación de la composición de especies registradas, por medio de los dos primeros componentes principales del ACP (Figura 4):

El componente 1 (% var. = 61.298 evidenció la separación de las evaluaciones según la época lluviosa y seca. La especie *Colibri coruscans* (coco) estuvo asociada a las épocas lluviosas debido a que tiene preferencia de flores, especialmente de eucalipto (Schulenberg *et al.*, 2010); mientras en las épocas secas, la abundancia de esta especie disminuye debido a que presenta desplazamientos locales (Zerda-Ordoñez, 1994). Las especies *Sicalis uropygialis* (siur) y *Geospizopsis plebejus* (geple) fueron asociadas a las épocas secas debido a sus comportamientos gregarios post-reproductivos (Fjeldså & Krabbe, 1990), ya que se registraron junto con individuos juveniles.

En el componente 2 (% var. = 28.738), los datos sugieren que existen variaciones composicionales de la comunidad de aves en las épocas secas debido a alguna variable temporal y/o patrones caóticos aún no determinados. Este componente evidenció una correlación positiva de la evaluación seca 2015 con las especies Sicalis olivaceus (siol) y Geospizopsis plebejus (geple), mientras la evaluación seca 2016 con Zonotrichia capensis (zoca) y Spinus magellanicus (spima).

Figura 3. Asociación temporal de las comunidades de aves, mediante el análisis de conglomerados (índice de similitud de Bray-Curtis).

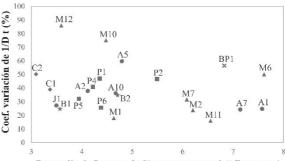
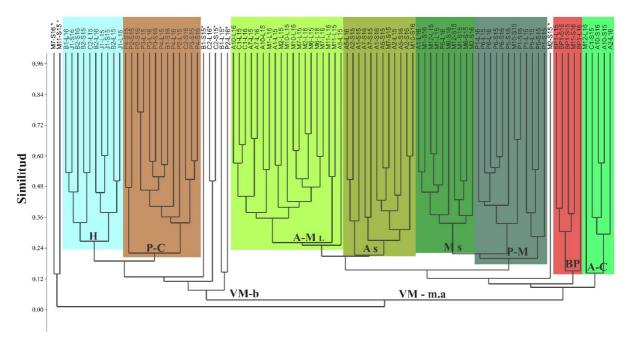


Figura 4. Componentes principales temporales de la comunidad de aves, incluyendo las especies con mayor peso ("loading") en el ACP.

Mediante este resultado se sugiere que el atractor temporal de la comunidad de aves en la época seca posee mayor redundancia funcional que la época lluviosa debido a su variabilidad de composición temporal de especies. Esta sugerencia fue asociada principalmente a que estas especies poseen similares características funcionales, ya que son aves de tamaño mediano-pequeño, con alimentación principalmente granívora y de estrato bajo (Clement, 2020; Jaramillo, 2020; Schulenberg, 2020). Este patrón es considerado como un mecanismo de reemplazo de especies con similares características funcionales, como respuesta a cambios externos, sin alterar los procesos ecológicos en el sistema (Sánchez, 1992).

Análisis de patrones espacio-temporales

A partir de la relación de la diversidad alfa promedio (Inversa de Simpson) y su respectivo coeficiente de variación (%) espacio-temporal evidenció la importancia de las formaciones vegetales, a nivel de promedios de la diversidad (Figura 5). Los transectos con alta diversidad fueron asociados a bosque de *Polylepis*, incluso ciertos matorrales y campos agrícolas, mientras que los transectos con baja diversidad fueron asociados al césped y juncal. Este patrón a grandes rasgos coincide con lo propuesto por Sevillano-Ríos (2020) que la menor biodiversidad de aves en la vertiente centro-occidental de los andes peruanos se encuentra en los pisos altitudinales bajos y altos debido al factor de la aridez.



Promedio de Inversa de Simpson temporal (1/D t prom.)

Formación vegetal: campo agrícola (círculo), matorral (triángulo), bosque de *Polylepis* (aspa), pajonal (cuadrado), bofedal (estrella), césped (rombo), juncal (hexágono).

Figura 5. Relación de la diversidad temporal promedio y su coeficiente de variación de cada transecto.

En cuanto a los estados alternativos espaciotemporales de la comunidad de aves, se explicita la diferenciación de su configuración en dos escalas: estados alternativos de macro-escala y meso-escala, denominados por su agrupación dependiendo de su escala espacial, ya que abarcan a nivel de pisos ecológicos altitudinales y formaciones vegetales, respectivamente. En total se determinaron dos estados alternativos de macro-escala, asociados a la complejidad de estructura vegetal matriz y gradiente altitudinal, y ocho estados alternativos de meso-escala que están relacionados a una o más formaciones vegetales y la variación temporal de la comunidad (Figura 6), además de sus especies indicadoras según el análisis SIMPER (Tabla 2). Los resultados de NP-MANOVA ($F_{Bray-Curtis} = 9.024$, p-valor_{Bray-Curtis} = 0.001, Tabla 3) y su respectiva prueba de homocedasticidad de dispersiones multivariada (Permutación = 999, F = 0.951, p-valor = 0.444) corroboran dichos estados alternativos, dejando de lado a los transectos que no se asociaron a estas clasificaciones.

Los códigos de los transectos en la parte superior fueron identificados por su época y año, agregándole: L = época lluviosa, S = época seca, 15 = año 2015 y 16 = año 2016.

Los nombres de las siglas del gráfico se encuentran en la Tabla 2.

Figura 6. Estados alternativos espacio-temporales de la comunidad de aves a nivel de macro-escala (base) y meso-escala (ramas) a partir del análisis de conglomerados.

Tabla 2. Propuesta de especies indicadoras (E.I) según cada estado alternativo comunitario, mediante el análisis SIMPER.

Ecorregión	Estado alternativo de macro-escala	Estado alternativo de meso-escala	Especies indicadoras (ordenado descendentemente por porcentaje de contribución al análisis SIMPER)
1	Vegetación	Humedal (H)	Cinclodes albiventris, Gallinago andina
Puna Húmeda Seca	matriz de bajo estrato (VM- b)	Pajonal-Césped (P-C)	Sicalis uropygialis, Cinclodes albiventris
Puna I		Bosques de <i>Polylepis</i> y alrededores (BP)	Xenodacnis parina
Transición		Pajonal-matorral (P-M)	Geospizopsis plebejus
æ	Vegetación matriz de medio	Agrícola-matorral época lluviosa (A-M _L)	Colibri coruscans, Zonotrichia capensis, Rhopospina fruticeti
Andin	y alto estrato (VM – m,a)	Agrícola época seca (A s)	Zonotrichia capensis, Turdus chiguanco
Meso-Andina		Matorral época seca (M s)	Rhopospina fruticeti, Zonotrichia capensis
		Agrícola-Césped (A-C)	Metriopelia ceciliae

^{*}Transectos no agrupados

Tabla 3. NP-MAI	NOVA de los	s estados	alternativos	a nivel	de meso-escala
(derecha: p-valor n	nediante la sig	gnificancia	secuencial of	de Bonfe	erroni, izquierda:
valores de F).					

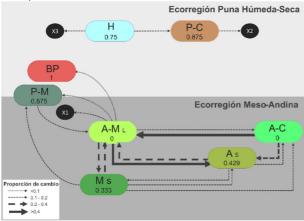
	<i>)</i> ·							
Estados alternativos	А-С	A-M _L	M s	A s	BP	P-M	Н	Р-С
A-C	0	0.0004	0.0012	0.0004	0.0081	0.0007	0.0016	0.0007
A-M _L	6.131	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
M s	8.236	8.271	0	0.0001	0.0004	0.0001	0.0001	0.0001
A s	4.546	6.231	6.265	0	0.0003	0.0001	0.0001	0.0001
BP	4.879	6.925	6.185	4.72	0	0.0002	0.0007	0.0002
P-M	6.554	10.9	5.346	7.84	4.505	0	0.0001	0.0001
Н	7.576	15.72	12.82	10.96	6.532	9.091	0	0.0001
P-C	8.938	19.95	14.75	13.72	7.519	8.51	6.532	0

Estados alternativos de la comunidad de aves: agrícola – césped (A-C), agrícola – matorral en temporada lluviosa (A-M_L), matorral en temporada seca (M_S), agrícola en temporada seca (A_S), Bosque de Polylepis y alrededores (BP), pajonal-matorral (P-M), humedal (H) y pajonal-césped (P-C).

En el estado alternativo a nivel de macro-escala "Vegetación matriz de bajo estrato" (VM – b) se determinaron dos estados alternativos a nivel de meso-escala:

- "Humedal" (H): comunidad asociada principalmente a bofedales y juncales, y ciertas zonas que temporalmente pueden tener esta condición muy húmeda en la puna (Gibbons et al., 2016)
- "Pajonal-césped" (P-C): comunidad relacionada a la matriz principal de la puna que conforman el pajonal y césped, con cierto grado de humedad, denominados también praderas de puna (Gibbons *et al.*, 2016).

En el estado alternativo a nivel de macro-escala "Vegetación matriz de medio y alto estrato" (VM – m,a) se determinaron seis estados alternativos a nivel de meso-escala:


- "Bosque de Polylepis y alrededores" (BP): comunidad relacionada a los bosques de *Polylepis*, compuestos a su vez por arbustos generalmente del género Gynoxis, con una alta presencia de *Xenodacnis parina*, como especie parcialmente especialista de estas formaciones vegetales (Schulenberg *et al.*, 2010), además de contar con especies de matorral y pajonal de sus alrededores.
- "Pajonal-matorral" (P-M): comunidad asociada a pajonal-césped con especies arbustivas, denominado como estado alternativo intermedio entre la ecorregión Puna Húmeda-Seca y Meso-Andina (Britto, 2017), siendo una transición de la composición de aves.
- "Agrícola-matorral época lluviosa" (A-M

 L): comunidad relacionada a la agrupación de
 diferentes campos agrícolas y matorrales en
 las épocas lluviosas, destacando Colibri
 coruscans.
- "Agrícola época seca" (A s): representa a la comunidad de campos agrícolas en la

- temporada seca; generalmente son campos de cultivos para forraje (p.e. *Cenchrus clandestinum* "kikuyo" y *Medicago sativa* "alfalfa") y agricultura familiar, con bordes de cobertura arbustiva seca y arvenses que crecen en la temporada de barbecho.
- "Matorral época seca" (M s): conformado por la comunidad de matorral arbustivo en las evaluaciones de la temporada seca o de ambientes secos, que incluyen especies vegetales xerofíticas, también denominado matorrales montanos áridos (Stotz et al., 1996).
- "Agrícola-césped" (A-C): representa a la comunidad de campos agrícolas poco densos o césped, generalmente con cultivos para forraje de ganados con pocos o sin bordes arbustivos, asociándose aves de hábitats abiertos y secos, por ejemplo, *Metriopelia* ceciliae (Schulenberg et al., 2010).

A partir de la determinación de los estados alternativos, se propone un modelo de estado transición de las comunidades de aves de acuerdo a la persistencia/cambio de estados alternativos por transectos (Figura 7). Las proporciones de persistencia fueron mayores en estados alternativos ubicados en la ecorregión Puna Húmeda-Seca que en la ecorregión Meso-Andina, caso contrario, en la conectividad y proporción de flujo de configuración de aves. Entre los estados alternativos con mayor persistencia está la comunidad de aves de "Bosque de Polylepis y alrededores" registrado en un solo transecto, la que refleja una alta resiliencia por mantenerse en el mismo estado alternativo. Caso contrario, los estados alternativos de las comunidades de aves "Agrícola-Matorral en época lluviosa" y "Agrícola-Césped" obtuvieron proporciones sin persistencia que evidencia su presencia temporal. Cabe señalar que, se incluyeron los transectos que no fueron asociados a algún estado alternativo, que podrían denominarse como "estados alternativos transitorios" (símbolo X) ya que las comunidades no han alcanzado un estado estable y

varían su estructura (composición y abundancia de especies) debido al historial de inmigración variable y otros procesos estocásticos (Fukami & Nakajima, 2011).

X (estados alternativos transitorios).

Figura 7. Modelo estado-transición de la comunidad de aves con sus proporciones de persistencia (recuadro) y cambio (flechas) de estados alternativos espaciotemporales.

Discusión

De la interpretación de los patrones espaciotemporal emergieron diferentes patrones de las comunidades de aves relacionándolos características de Sistemas Complejos Adaptativos (CAS), según Kay et al. (1999) y Earls (2006). (1) La autoorganización fue determinada por la presencia de constricciones por una o más formaciones vegetales y su temporalidad, así también por la redundancia funcional de especies en las épocas secas. (2) El incremento de la complejidad (heterogeneidad entre los elementos) por la mayor cantidad de estados alternativos comunitarios en algunas formaciones vegetales que en otras. (3) Los patrones caóticos fueron determinados en la variación de la composición temporal en las épocas secas y las dinámicas inesperadas de cambio de estados alternativos espaciotemporal (un caso especial son los estados alternativos transitorios). (4) El anidamiento de sistemas (en este caso de comunidades de aves) en diferentes escalas espaciales y temporales expresadas en sus estados alternativos de macro-escala y meso-escala. (5) La presencia de múltiples estados alternativos en las comunidades de aves, tanto en el análisis espaciotemporal (ocho estados alternativos de meso-escala), como probablemente en el análisis temporal (dos estados alternativos asociados a la época lluviosa y seca). Mediante estas características se pueden proponer ciertos factores ecológicos que influyen en la comunidad de aves dentro del agroecosistema del distrito de Cajatambo.

La disponibilidad de agua es un factor importante en las comunidades silvestres y antrópicas en zonas

áridas o semi-áridas debido a su aporte en el desencadenamiento de diferentes funciones ecosistémicas (Martínez, 2006). En general, se registró que las descargas de agua del nivel freático al superficial y aguas de escorrentía tienen gran importancia para las aves como bebederos, especialmente en épocas secas. En el caso los estados alternativos de la ecorregión Meso-Andina, se pueden describir dos tipos de retroalimentaciones, según Chapin et al. (2009), debido al régimen hídrico entre épocas, específicamente la dinámica del estado alternativo Agrícola-Matorral en época lluviosa (A-M ll) a otros estados alternativos en las épocas secas. Las épocas lluviosas causaron una retroalimentación estabilizadora para la configuración de la comunidad de aves en las áreas de matorral y campos agrícolas, ya que tienden a reducir las fluctuaciones en las velocidades del proceso de formación de estados alternativos; en cambio, las épocas secas causaron una retroalimentación amplificadora, ya que aumentaron los cambios en las tasas de proceso (mayor proporción de cambios de estado alternativo) y tienden a desestabilizar a la comunidad, dividiendo hasta tres estados alternativos temporales más comunes. Esta retroalimentación amplificadora se podría evidenciar también en su mayor redundancia funcional de especies en esta época, de acuerdo a lo sugerido anteriormente. Mientras en los estados alternativos de la ecorregión Puna Húmeda-Seca, el factor hídrico (como almacenamiento de agua) es muy importante, ya que muchas especies están asociadas a humedales, expresándose en el estado alternativo de comunidades de humedales ("H"). La importancia ecológica de los humedales altoandinos es relevante para los procesos reproductivos de las especies de aves y/o como oasis en la puna frecuentemente seca (Gibbons et al., 2016).

Otro factor importante para la comunidad de aves en los agroecosistemas es la complejidad de la estructura vegetal en el paisaje (Klein et al., 2023). Esta complejidad vegetal cobra mayor relevancia en las épocas secas, por ejemplo, el bosque de Polylepis tiene una función importante para las comunidades de matorral adyacente en épocas secas ya que es un hábitat que mantiene la humedad y protege del calor a las especies de aves (Sevillano, 2016). En cambio, los campos agrícolas con baja cobertura vegetale arbustiva y césped (asociados al estado alternativo agrícola-césped) obtuvieron baja diversidad y permanencia nula en el estado alternativo, sobre todo en épocas secas, debido a la mayor exposición al sol. En ese sentido, la conservación y uso sostenible de los ambientes con cobertura arbórea y arbustiva silvestre es importante para la comunidad de aves en las zonas áridas.

La diversidad de especies es considerada como indicador de la complejidad y estabilidad de los agroecosistemas (Sans, 2007; Salinas *et al.*, 2007), dejando de lado los procesos y flujos de la

configuración de la comunidad de aves, que se podría evidenciar mediante la determinación de sus estados alternativos. Incluir el modelo de estado-transición de las comunidades espacio-temporales de aves podrían aportar adicionalmente en la definición de la complejidad de las comunidades biológicas, reconociendo sus interacciones asociadas a sus principales factores ecológicos. Por ejemplo, el reconocimiento de múltiples estados alternativos espacio-temporales (variedad de reorganización de la comunidad), alta diversidad espacio-temporal (variedad de especies) y las proporciones de persistencia-cambio entre estados alternativos (variedad de intensidad de flujos en la configuración comunitaria) en las formaciones vegetales de matorral campos agrícolas evidenciaron una mayor complejidad a diferencia de otras comunidades, según la escala establecida en el área de estudio. Se sugiere que estas variables podrían describir la complejidad de manera exploratoria en los patrones espacio-temporales comunitarios, ya que está relacionada directamente con la información del sistema (Earls, 2006). En resumen, acorde a la Ley de Ashby ("la complejidad del sistema tiene que ser mayor o igual a la complejidad de su ambiente"), la complejidad de las comunidades de aves de la ecorregión Meso-Andina, a diferencia de la comunidad de la ecorregión Puna Húmeda-Seca, podría tener mayor adaptabilidad a la estocasticidad ambiental debido a que posee una mayor cantidad de estados alternativos y alta proporción de cambios entre sí.

Conclusiones

Se describieron las características de sistemas complejos adaptativos en las comunidades de aves del distrito de Cajatambo, tales como la auto-organización, incremento de la complejidad, patrones caóticos, comportamiento de sistemas (comunidades) anidados, y múltiples estados alternativos, que ayudan a comprender su organización y dinámica en las escalas temporales y espacio-temporales.

Los patrones temporales de las comunidades de aves del distrito no presentaron significancia estadística; sin embargo, se sugieren dos estados alternativos temporales dadas las épocas lluviosas y secas, en el que sugiere una mayor redundancia funcional en la época seca por especies granívoras y pequeñas.

En el caso de los patrones espacio-temporales, las comunidades de aves presentaron dos estados alternativos de macro-escala y dentro de ellas ocho estados alternativos de meso-escala con sus respectivas especies indicadoras. Estos estados alternativos estuvieron asociados a una o dos formaciones vegetales predominantes y temporalidad. Los estados alternativos con mayor dinámica fueron los relacionados a matorrales y campos agrícolas, mientras que los que obtuvieron mayor persistencia fueron los relacionados con bosque de *Polylepis*, pajonales y humedales.

Los factores ecológicos importantes para la comunidad de aves, a partir de la determinación de estados alternativos, fueron la disponibilidad de agua y la estructura vegetal presente en el agroecosistema en estudio. La disponibilidad de agua promovió la reorganización de las comunidades de aves de la ecorregión Meso-Andina, evidenciándose retroalimentaciones relacionadas por su menor y mayor tasa de cambio de estados alternativos en la época lluviosa y seca, respectivamente. Asimismo, la estructura vegetal, expresada en la variedad de formaciones vegetales, estuvieron asociadas a los estados alternativos de las comunidades de aves, incluso obteniendo mayores valores de diversidad en las formaciones vegetales con mayor complejidad de estructura vegetal, tales como bosques de Polylepis y algunos matorrales y campos agrícolas.

Dada la alta diversidad espacio-temporal, variedad de estados alternativos y altos cambios en la configuración de las comunidades de aves en la ecorregión Meso-Andina (generalmente las áreas de matorrales y campos agrícolas), estas comunidades podrían tener mayor complejidad y adaptabilidad que las de la ecorregión Puna Húmeda-Seca.

Agradecimientos

Esta investigación fue realizada en el marco del Proyecto "Determinación de criterios para el establecimiento de Estándares de Calidad Ambiental para la Diversidad Biológica. Estudio de Caso: Distrito de Cajatambo" Contrato No. 365-PNCIP-PIAP-2014, en el que los autores agradecen al Programa Nacional de Innovación para la Competitividad y Productividad del Ministerio de la Producción de Perú y a todos los investigadores, tesistas y estudiantes que brindaron gran esfuerzo para llevar a cabo el proyecto. Finalmente, a los cajatambinos por su hospitalidad en cada salida de campo y su colaboración para participar en las reuniones del proyecto.

Literatura citada

Begon M., Townsend C.R. & Harper J.L. 2006. Ecology. From individuals to ecosystems (4th ed.). Blackwell Publishing Ltd., Oxford. http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Ecology-From-Individuals-to-Ecosystems-by-Michael-Begon--2006-.pdf.

Beisner B.E., Haydon D.T. & Cuddington K. 2003. Alternative stable states in ecology. Front. Ecol. Environ., 1(7): 376–382. https://doi.org/10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2.

Bibby C.J., Burgess N.D. & Hill D.A. 1992. Bird Census Techniques (Academic P). 1st Edition. Elsevier. San Diego. https://shop.elsevier.com/books/bird-censustechniques/bibby/978-0-12-095830-6.

Billerman S.M., Keeney B.K, Rodewald P.G. & Schulenberg T.S. (eds). 2022. Birds of the World. Cornell Laboratory of Ornithology. Ithaca, New York. [database website]. https://birdsoftheworld.org/bow/home.

- Britto B. 2017. Actualización de las ecorregiones terrestres de Perú propuestas en el Libro Rojo de Plantas Endémicas del Perú. Gayanna Bot., 74(1): 15–29. http://dx.doi.org/10.4067/S0717-66432017005000318.
- Castro V.P. 2019. Efecto de la sucesión post-agrícola temprana sobre la diversidad vegetal en cuatro agroecosistemas en el distrito de Cajatambo, Lima, Perú. Tesis para optar el grado de Doctor en Agricultura Sustentable. Universidad Nacional Agraria La Molina. https://hdl.handle.net/20.500.12996/4196.
- Chapin III F.S., Folke C. & Kofinas G.P. 2009. A Framework for Understanding Change. *In*: Chapin F.S., G.P. Kofinas & C. Folke (eds) Principles of ecosystem stewardship. Resilience-based natural resource management in a changing world: 1–28. Springer, New York. https://doi.org/10.1007/978-0-387-73033-2.
- Clement P. 2020. Hooded Siskin (*Spinus magellanicus*). Version 1.0. *In*: del Hoyo J., Elliott A., Sargatal J., Christie D.A. & de Juana E. (eds) Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. [database website]. https://doi.org/10.2173/bow.hoosis1.01.
- Cody M.L. (Ed). 1985. Habitat Selection in Birds. Academic Press, Orlando. https://bit.ly/rEA-UNALM-16.
- Cumming G.S. 2011. Spatial resilience in Social-Ecological Systems. Springer Dordrecht, Cape Town. https://doi.org/10.1007/978-94-007-0307-0.
- Earls J. 2006. Introducción a la Teoría de los Sistemas Complejos (IDEA-PUCP). Fondo Editorial Pontifica Universidad Católica del Perú, Lima. https://www.fondoeditorial.pucp.edu.pe/antropologia/50-introduccion-a-la-teoria-de-sistemas-complejos.html.
- Fjeldså J. & Krabbe N. 1990. Birds of the High Andes. Zoological Museum University of Copenhagen, Copenhagen.
- Fukami T. & Nakajima M. 2011. Community assembly: alternative stable states or alternative transient states?. Ecology Letters, 14(10): 973-984. https://doi.org/10.1111/j.1461-0248.2011.01663.x
- Fung T., Seymour R.M. & Johnson C.R. 2011. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology, 92(4): 967-982. https://doi.org/10.1890/10-0378.1.
- Gibbons R.E., Jia Z. & Villalba I. 2016. Habitat use and seasonality of birds in the Peruvian puna with an emphasis on peatlands (bofedales). Boletín UNOP, 11(2): 42-62.
- https://boletinunop.weebly.com/uploads/6/2/2/6/622659 85/boletin_unop_vol._11_n%C2%BA2_2016_-_gibbons_-_final.pdf. Hammer Ø. 2019. PAST (PAleontological STatistics).
- Hammer Ø. 2019. PAST (PAleontological STatistics). Version 3.25. Reference manual. Natural History Museum University of Oslo. Oslo. https://www.nhm.uio.no/english/research/resources/past/downloads/past4manual.pdf.
- Jaramillo A. & Kirwan G.M. 2020. Greenish Yellow-Finch (*Sicalis olivascens*). Version 1.0. *In*: del Hoyo J., Elliott A., Sargatal J., Christie D.A. & de Juana E. (eds) Birds of the World. Cornell Lab of Ornithology. Ithaca, New York. [database website]. https://doi.org/10.2173/bow.gryfin3.01.

- Jaramillo A. 2020. Ash-breasted Sierra-Finch (*Geospizopsis plebejus*). Version 1.0. *In*: del Hoyo J., Elliott A., Sargatal J., Christie D.A. & de Juana E. (eds) Birds of the World. Cornell Lab of Ornithology. Ithaca, New York. [database website]. https://doi.org/10.2173/bow.absfin1.01.
- Kay J.J., Regier H.A., Boyle M. & Francis G. 1999. An ecosystem approach for sustainability: addresing the challenge of complexity. Futures, 31(7): 721–742. https://doi.org/10.1016/S0016-3287(99)00029-4.
- Klein N., Grêt-Regamey A., Herzog F., van Strien M.J. & Kay S. 2023. A multi-scale analysis on the importance of patch-surroundings for farmland birds. Ecological Indicators, 150: 110197. https://doi.org/10.1016/j.ecolind.2023.110197.
- Laycock W.A. 1991. Stable states and thresholds of range condition on North American rangelands: a viewpoint. Journal of Range Management Archives, 44(5): 427-433. https://journals.uair.arizona.edu/index.php/jrm/article/viewFile/8636/8248.
- Maestre F. & Escudero A. 2008. Introducción. *En*: Maestre F., Escudero A. & Bonet A. (eds) Introducción al análisis espacial de datos en Ecología y Ciencias Ambientales: Métodos y aplicaciones. 1–33. DYKINSON, S.L., Madrid. https://maestrelab.com/wp-content/uploads/2015/10/Cap_1_Maestre-Escudero.pdf.
- Malpartida D. 2015. Representación de los patrones dinámicos del paisaje del campus de la UNALM como Sistema Socio-Ecológico mediante Modelos de Estado-Transición entre los años 1970, 1976, 2011 y 2014. Tesis para optar el Título de Biólogo. Universidad Nacional Agraria La Molina. https://hdl.handle.net/20.500.12996/2008.
- Margalef R. 2022. Diversidad y biodiversidad. *En*: Diaz-Pineda F. (Coord) La diversidad biológica de España. 3-6. Prentice Hall, Madrid.
- Martínez J. 2006. Agua y sostenibilidad: algunas claves desde los sistemas áridos. Polis: Revista Latinoamericana, 14: 1–13. http://journals.openedition.org/polis/5096.
- Miranda F. 2011. Cajatambo: tradición, quechua y desintegración regional. Investigaciones Sociales, 15(26): 175–211. https://doi.org/10.15381/is.v15i26.7384.
- Oksanen J. & Minchin P.R. 2020. Package 'vegan': Community Ecology Package. R package version 2.5-6. CRAN (The Comprehensive R Archive Network). https://cran.r-
- project.org/src/contrib/Archive/vegan/vegan_2.5-6.tar.gz Petraitis P.S. & Dudgeon S.R. 2004. Detection of alternative stable states in marine communities. Journal of Experimental Marine Biology and Ecology, 300(1-2): 343-371. https://doi.org/10.1016/j.jembe.2003.12.026.
- Plengue. 2024. List of the birds of Peru / Lista de las aves del Perú. Unión de Ornitólogos del Perú: https://sites.google.com/site/boletinunop/checklist.
- Quinteros D.Z. & Sánchez E. 2017. Descripción del sistema agrario del distrito de Cajatambo (Lima) y clasificación de los productores a partir de una encuesta. Ecología Aplicada, 16(2): 165–175. http://dx.doi.org/10.21704/rea.v16i2.1020.
- Quinteros D.Z., Sánchez E. & Tovar H. 2002. Relación entre la abundancia relativa y densidad real en tres poblaciones de aves. Ecología Aplicada, 1(1.2): 95–104. DOI: https://doi.org/10.21704/rea.v1i1-2.236.

- Rising J.D. & Jaramillo A. 2020. Rufous-collared Sparrow (*Zonotrichia capensis*). Version 1.0. *In*: del Hoyo J., Elliott A., Sargatal J., Christie D.A. & de Juana E. (eds) Birds of the World. Cornell Lab of Ornithology. Ithaca, New York, UUEE. [database website] https://doi.org/10.2173/bow.rucspa1.01.
- Salinas L., Arana C. & Pulido V. 2007. Diversidad, abundancia y conservación de aves en un agroecosistema del desierto de Ica, Perú. Revista Peruana de Biología, 13(3): 155–167. https://www.redalyc.org/articulo.oa?id=195018597003.
- Sánchez E. & Quinteros D.Z. 2017. Pertinencia del concepto de estándar de calidad ambiental (ECA) en la gestión de sistemas ambientales con varios estados alternativos. Estudio de caso de una experiencia peruana. Ecología Aplicada, 16(2): 151–164. http://dx.doi.org/10.21704/rea.v16i2.1019.
- Sánchez E. 1992. Diversidad y Estabilidad de Comunidades de Aves en la Reserva Nacional de Lachay. Tesis para optar el Grado de *Magister Scientiae* en la Especialidad de Conservación de Recursos Forestales. Universidad Nacional Agraria La Molina. URI: https://hdl.handle.net/20.500.12996/1805.
- Sans F.X. 2007. La diversidad de los agroecosistemas. Ecosistemas, 16(1): 44–49. URI: http://hdl.handle.net/10045/7686.
- Schulenberg T.S. 2020. Bright-rumped Yellow-Finch (*Sicalis uropygialis*). Version 1.0. *In*: del Hoyo J., Elliott A., Sargatal J., Christie D.A. & de Juana E. (eds) Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. [database website]. https://doi.org/10.2173/bow.bryfin1.01.
- Schulenberg T.S., Stotz D.F., Lane D.F., O'Neill J.P. & Parker III T.A. 2010. Birds of Peru. Princeton, New Jersey.
 - https://press.princeton.edu/books/paperback/978069113 0231/birds-of-peru.
- Sebastián-González E., Botella F. & Sánchez-Zapata J.A. 2013. Patrones, procesos y conservación de comunidades: el caso de las aves acuáticas en humedales artificiales. Revista Catalana d'Ornitologia, 29: 75-92. https://ornitologia.org/mm/file/queoferim/divulgacio/pu blicacions/rco/29 75 92.pdf.
- SENAMHI. 2020. Mapa de clasificación climática del Perú. SENAMHI (Servicio Nacional de Meteorología e Hidrografía). Lima. [website]. Consultado 20 de abr. 2020 de: https://idesep.senamhi.gob.pe/geonetwork/srv/spa/catalog.search#/metadata/9f18b911-64af-4e6b-bbef-272bb20195e4.
- Sevillano C.S. 2016. Diversity, ecology and conservation of bird communities of Polylepis woodlands in the Northern Andes of Peru. A Thesis Presented to the Faculty of the Graduate School In Partial Fulfillment of the Requirements for the Degree of Master of Science. Cornell University. https://doi.org/10.7298/X45D8PSK. https://hdl.handle.net/1813/44286.
- Sevillano-Ríos C.S. 2020. Habitat loss, fragmentation and climatic drivers of avian diversity acrros the Andes and implications for climate change. A Dissertation Presented to the Faculty of the Graduate School Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.

 Cornell University. https://doi.org/10.13140/RG.2.2.27787.31524.

- Stotz D.F., Fitzpatrick J.W., Parker III T.A. & Moskovits D.K. 1996. Neotropical birds. Ecology and conservation. The University of Chicago Press, Chicago. https://press.uchicago.edu/ucp/books/book/chicago/N/bo 3635040.html.
- Tóthmérész B. 1995. Comparison of different methods for diversity ordering. Journal of Vegetation Science, 6(2): 283–290. https://doi.org/10.2307/3236223.
- Véliz C., Sánchez E. & Tori W. 2002. Cambios espaciotemporales en la diversidad de la comunidad de aves en las Lomas de Lachay luego del evento El Niño 97 - 98. Ecología Aplicada, 1(1): 75–79. https://doi.org/10.21704/rea.v1i1-2.233.
- Villegas M. & Garitano-Zavala A. 2008. Las comunidades de aves como indicadores ecológicos para programas de monitoreo ambiental en la ciudad de La Paz, Bolivia. Ecología en Bolivia, 43(2): 146-153.
- Walsh Perú. 2009. Estudio de Impacto Ambiental (EIA) del Proyecto Central Hidroelétrica Rapay Salto 1 y Salto 2. Resumen Ejecutivo, Proyecto N° ELE-1127.
- Westoby M., Walker B. & Noy-meir I. 1989. Opportunistic management for rangelands not at equilibrium. Journal of Range Management, 42(4): 266–274. http://hdl.handle.net/10150/645053. https://doi.org/10.2307/3899492. https://www.jstor.org/stable/3899492.
- Zerda-Ordoñez E. 1994. Historia Natural Del Tominejo, Colibri coruscans coruscans (Gould) (Aves, Trochilidae). Universitas Scientarium, 2(1): 65–85. https://revistas.javeriana.edu.co/index.php/scientarium/a rticle/view/5078.

 Tabla 1. Lista de especies de aves registradas en la evaluación cuantitativa y sus respectivos Índices de Abundancias Relativas (IARE) por evaluación y total, entre los años 2015 y 2016.

					ADE non one line			
					IAKE por evaluación (ind/100 m)	cion (ma/100 m)		IARE total
Orden	Familia	Especie	Nombre comun	Lluviosa 2015	Seca 2015	Lluviosa 2016	Seca 2016	(ind/100 m)
Apodiformes	Apodidae	Aeronautes andecolus	Vencejo Andino	0.0450	0.0424	0.0000	0.2521	0.0855
Apodiformes	Trochilidae	Aglaeactis cupripennis	Rayo-de-Sol Brillante	0.1171	0.0085	0.0833	0.0000	0.0513
Passeriformes	Tyrannidae	Agriornis montanus	Arriero de Pico Negro	0.0090	0.0085	0.0417	0.0168	0.0192
Passeriformes	Tyrannidae	Anairetes flavirostris	Torito de Pico Amarillo	0.0000	0.0085	0.0000	0.0336	0.0107
Passeriformes	Tyrannidae	Anairetes reguloides	Torito de Cresta Pintada	0.0090	0.0932	0.0333	0.0252	0.0406
Anseriformes	Anatidae	Anas flavirostris	Pato Barcino	0.0180	0.0000	0.2250	0.0000	0.0620
Passeriformes	Motacillidae	Anthus furcatus	Cachirla de Pico Corto	0.0180	0.0508	0.0167	0.0840	0.0427
Passeriformes	Furnariidae	Asthenes humilis	Canastero de Garganta Rayada	0.0180	0.0000	0.0000	0.0420	0.0150
Passeriformes	Furnariidae	Asthenes modesta	Canastero Cordillerano	0.0000	0.0085	0.0000	0.0000	0.0021
Passeriformes	Furnariidae	Asthenes pudibunda	Canastero de Quebradas	0.0090	0.1356	0.0250	0.0756	0.0620
Passeriformes	Passerellidae	Atlapetes nationi	Matorralero de Vientre Rojizo	0.0090	0.0424	0.0000	0.0000	0.0128
Passeriformes	Passerellidae	Atlapetes seebohmi	Matorralero de Corona Baya	0.0631	0.0424	0.0500	0.0840	0.0598
Psittaciformes	Psittacidae	Bolborhynchus orbygnesius	Perico Andino	0.0000	0.0000	0.0250	0.0000	0.0064
Passeriformes	Tyrannidae	Camptostoma obsoletum	Mosquerito Silbador	0.0000	0.0424	0.0000	0.0000	0.0107
Passeriformes	Thraupidae	Catamenia analis	Semillero de Cola Bandeada	0.0000	0.2288	0.0583	0.0588	0.0876
Passeriformes	Thraupidae	Catamenia inornata	Semillero Simple	0.0270	0.0169	0.0333	0.1765	0.0641
Charadriiformes	Laridae	Chroicocephalus serranus	Gaviota Andina	0.0000	0.0000	0.0000	0.0084	0.0021
Passeriformes	Furnariidae	Cinclodes albiventris	Churrete de Ala Crema	0.2613	0.1780	0.2417	0.2605	0.2350
Piciformes	Picidae	Colaptes atricollis	Carpintero de Cuello Negro	0.0000	0.0085	0.0250	0.0000	0.0085
Piciformes	Picidae	Colaptes rupicola	Carpintero Andino	0.0450	0.0593	0.0500	0.0252	0.0449
Apodiformes	Trochilidae	Colibri coruscans	Oreja-Violeta de Vientre Azul	0.4955	0.0339	0.4917	0.0000	0.2500
Passeriformes	Thraupidae	Conirostrum cinereum	Pico-de-Cono Cinéreo	0.0360	0.0593	0.0583	0.0000	0.0385
Passeriformes	Thraupidae	Diglossa brunneiventris	Pincha-Flor de Garganta Negra	0.0000	0.0424	0.0167	0.0252	0.0214
Passeriformes	Thraupidae	Diglossa sittoides	Pincha-Flor de Pecho Canela	0.0000	0.0000	0.0167	0.0000	0.0043

				1	IARE por evaluación (ind/100 m)	ción (ind/100 m)		IARE total
Orden	Familia	Especie	Nombre común	Lluviosa 2015	Seca 2015	Lluviosa 2016	Seca 2016	(ind/100 m)
Passeriformes	Icteridae	Dives warczewiczi	Tordo de Matorral	0.0901	0.0339	0.0917	0.0588	0.0684
Falconiformes	Falconidae	Falco femoralis	Halcón Aplomado	0.0000	0.0254	0.0250	0.0000	0.0128
Falconiformes	Falconidae	Falco peregrinus	Halcón Peregrino	0.0000	0.0000	0.0000	0.0168	0.0043
Falconiformes	Falconidae	Falco sparverius	Cernícalo Americano	0.0360	0.0847	0.0417	0.0252	0.0470
Charadriiformes	Scolopacidae	Gallinago andina	Becasina de la Puna	0.0180	0.1186	0.0417	0.0924	0.0684
Passeriformes	Furnariidae	Geocerthia serrana	Bandurrita Peruana	0.0090	0.0000	0.0000	0.0084	0.0043
Passeriformes	Furnariidae	Geositta saxicolina	Minero Andino	0.0541	0.0932	0.0250	0.0672	0.0598
Passeriformes	Furnariidae	Geositta tenuirostris	Minero de Pico Largo	0.0000	0.0085	0.0000	0.0504	0.0150
Accipitriformes	Accipitridae	Geranoaetus melanoleucus	Aguilucho de Pecho Negro	0.0270	0.0085	0.0000	0.0168	0.0128
Accipitriformes	Accipitridae	Geranoaetus polyosoma	Aguilucho Variable	0.1081	0.0508	0.0083	0.0420	0.0513
Passeriformes	Grallariidae	Grallaria andicolus	Tororoi de Cabeza Listada	0.0180	0.0169	0.0083	0.0168	0.0150
Passeriformes	Furnariidae	Leptasthenura pileata	Tijeral de Corona Castaña	0.0180	0.0085	0.0083	0.0504	0.0214
Apodiformes	Trochilidae	Lesbia nuna	Colibrí de Cola Larga Verde	0.0270	0.0000	0.0000	0.0000	0.0064
Anseriformes	Anatidae	Lophonetta specularioides	Pato Crestón	0.0000	0.0000	0.0083	0.0000	0.0021
Apodiformes	Trochilidae	Metallura phoebe	Colibrí Negro	0.0180	0.0339	0.0583	0.0420	0.0385
Apodiformes	Trochilidae	Metallura tyrianthina	Colibrí Tirio	0.0000	0.0085	0.0333	0.0084	0.0128
Columbiformes	Columbidae	Metriopelia ceciliae	Tortolita Moteada	0.0450	0.0254	0.3417	0.0756	0.1239
Columbiformes	Columbidae	Metriopelia melanoptera	Tortolita de Ala Negra	0.0450	0.1102	0.0667	0.1176	0.0855
Passeriformes	Tyrannidae	Muscisaxicola cinereus	Dormilona Cinérea	0.0000	0.0169	0.0000	0.0168	0.0085
Passeriformes	Tyrannidae	Muscisaxicola flavinucha	Dormilona de Nuca Ocrácea	0.0000	0.0000	0.0000	0.0084	0.0021
Passeriformes	Tyrannidae	Muscisaxicola griseus	Dormilona de Taczanowski	0.0360	0.0000	0.0250	0.0336	0.0235
Passeriformes	Tyrannidae	Muscisaxicola juninensis	Dormilona de la Puna	0.0090	0.0339	0.0417	0.0336	0.0299
Passeriformes	Tyrannidae	Muscisaxicola maculirostris	Dormilona Chica	0.0000	0.0000	0.0083	0.0588	0.0171
Passeriformes	Tyrannidae	Muscisaxicola rufivertex	Dormilona de Nuca Rojiza	0.0000	0.0169	0.0667	0.0000	0.0214
Passeriformes	Tyrannidae	Myiarchus tuberculifer	Copetón de Cresta Oscura	0.0090	0.0000	0.0083	0.0000	0.0043
Passeriformes	Tyrannidae	Myiotheretes striaticollis	Ala-Rufa de Garganta Rayada	0.0360	0.0085	0.0000	0.0084	0.0128
Apodiformes	Trochilidae	Myrtis fanny	Estrellita de Collar Púrpura	0.0000	0.0085	0.0000	0.0168	0.0064

AVES COMO SISTEMA COMPLEJO ADAPTATIVO EN UN AGROECOSISTEMA ANDINO PERUANO

)24
\approx
1:0
Ju
- 1
0

				7	IARE por evaluación (ind/100 m)	ión (ind/100 m)		IABE total
Orden	Familia	Especie	Nombre común	Lluviosa 2015	Seca 2015	Lluviosa 2016	Seca 2016	(ind/100 m)
Tinamiformes	Tinamidae	Nothoprocta ornata	Perdiz Cordillerana	0.0270	0.0085	0.0000	0.0000	0.0085
Tinamiformes	Tinamidae	Nothoprocta pentlandii	Perdiz Andina	0.0000	0.0085	0.0000	0.0000	0.0021
Passeriformes	Tyrannidae	Ochthoeca leucophrys	Pitajo de Ceja Blanca	0.0180	0.0169	0.0333	0.0504	0.0299
Passeriformes	Tyrannidae	Ochthoeca oenanthoides	Pitajo de d'Orbigny	0.0000	0.0000	0.0000	0.0084	0.0021
Passeriformes	Thraupidae	Conirostrum binghami	Pico-de-Cono Gigante	0.0180	0.0000	0.0000	0.0000	0.0043
Apodiformes	Trochilidae	Oreotrochilus estella	Estrella Andina	0.0000	0.0169	0.0167	0.0084	0.0107
Anseriformes	Anatidae	Oressochen melanopterus	Cauquén Huallata	0.0000	0.1864	0.0417	0.0588	0.0726
Passeriformes	Hirundinidae	Orochelidon andecola	Golondrina Andina	0.0360	0.0593	0.0000	0.0168	0.0278
Passeriformes	Hirundinidae	Orochelidon murina	Golondrina de Vientre Pardo	0.0000	0.0000	0.0000	0.0672	0.0171
Columbiformes	Columbidae	Patagioenas fasciata	Paloma de Nuca Blanca	0.0000	0.0000	0.0083	0.0000	0.0021
Apodiformes	Trochilidae	Patagona gigas	Colibrí Gigante	0.1441	0.0847	0.1083	0.0420	0.0940
Falconiformes	Falconidae	Phalcoboenus megalopterus	Caracara Cordillerano	0.0811	0.0847	0.0167	0.1008	0.0705
Passeriformes	Cardinalidae	Pheucticus chrysogaster	Picogrueso Dorado	0.0631	0.0085	0.0167	0.0000	0.0214
Passeriformes	Thraupidae	Rhopospina alaudina	Fringilo de Cola Bandeada	0.0000	0.0000	0.0083	0.0000	0.0021
Passeriformes	Thraupidae	Rhopospina fruticeti	Fringilo de Pecho Negro	0.3604	0.3051	0.2750	0.2353	0.2927
Passeriformes	Thraupidae	Geospizopsis plebejus	Fringilo de Pecho Cenizo	0.2342	0.8983	0.3917	0.7059	0.5620
Passeriformes	Thraupidae	Phrygilus punensis	Fringilo Peruano	0.0180	0.0847	0.0250	0.3025	0.1090
Passeriformes	Thraupidae	Geospizopsis unicolor	Fringilo Plomizo	0.0541	0.1356	0.0000	0.0336	0.0556
Passeriformes	Thraupidae	Rauenia bonariensis	Tangara Azul y Amarilla	0.0180	0.0339	0.0167	0.0000	0.0171
Passeriformes	Thraupidae	Pipraeidea melanonota	Tangara de Pecho Anteado	0.0270	0.0000	0.0000	0.0000	0.0064
Passeriformes	Cardinalidae	Piranga flava	Piranga Bermeja	0.0090	0.0085	0.0083	0.0168	0.0107
Pelecaniformes	Threskiornithidae	Plegadis ridgwayi	Ibis de la Puna	0.0000	0.5339	0.0000	0.2773	0.2051
Passeriformes	Tyrannidae	Cnemarchus rufipennis	Ala-Rufa Canelo	0.0090	0.0000	0.0000	0.0084	0.0043
Apodiformes	Trochilidae	Polyonymus caroli	Cometa de Cola Bronceada	0.0000	0.0424	0.0000	0.0672	0.0278
Passeriformes	Thraupidae	Poospiza hispaniolensis	Monterita Acollarada	0.0000	0.0000	0.0000	0.0168	0.0043
Psittaciformes	Psittacidae	Psittacara wagleri	Cotorra de Frente Escarlata	0.0901	0.0000	0.0000	0.0000	0.0214
Apodiformes	Trochilidae	Rhodopis vesper	Colibrí de Oasis	0.0000	0.0254	0.0000	0.0000	0.0064

	;			-	IARE por evaluación (ind/100 m)	ción (ind/100 m)		IARE total
Orden	Familia	Especie	Nombre común	Lluviosa 2015	Seca 2015	Lluviosa 2016	Seca 2016	(ind/100 m)
Passeriformes	Thraupidae	Saltator aurantiirostris	Saltador de Pico Dorado	0.0270	0.0085	0.0333	0.0084	0.0192
Passeriformes	Thraupidae	Sicalis olivascens	Chirigüe Verdoso	0.0270	0.3559	0.0917	0.0000	0.1197
Passeriformes	Thraupidae	Sicalis uropygialis	Chirigüe de Lomo Brillante	0.1892	0.3644	0.1833	0.7815	0.3825
Passeriformes	Fringillidae	Spinus atratus	Jilguero Negro	0.0180	0.0085	0.1083	0.0840	0.0556
Passeriformes	Fringillidae	Spinus magellanicus	Jilguero Encapuchado	0.1351	0.0847	0.0750	0.5210	0.2051
Passeriformes	Thraupidae	Sporophila simplex	Espiguero Simple	0.0000	0.0000	0.0000	0.0084	0.0021
Apodiformes	Apodidae	Streptoprocne zonaris	Vencejo de Collar Blanco	1.0541	0.0000	0.0000	0.0420	0.2607
Apodiformes	Trochilidae	Thaumastura cora	Colibrí de Cora	0.0000	0.0085	0.0000	0.0000	0.0021
Charadriiformes	Thinocoridae	Thinocorus orbignyianus	Agachona de Pecho Gris	0.0180	0.0000	0.0000	0.0168	0.0085
Passeriformes	Thraupidae	Thlypopsis ornata	Tangara de Pecho Rufo	0.0450	0.0000	0.0083	0.0000	0.0128
Passeriformes	Troglodytidae	Troglodytes aedon	Cucarachero Común	0.2703	0.2373	0.1333	0.1261	0.1902
Passeriformes	Turdidae	Turdus chiguanco	Zorzal Chiguanco	0.2252	0.2119	0.2583	0.2101	0.2265
Passeriformes	Turdidae	Turdus fuscater	Zorzal Grande	0.0090	0.0000	0.0000	0.0000	0.0021
Passeriformes	Furnariidae	Upucerthia validirostris	Bandurrita de Pecho Anteado	0.0090	0.0000	0.0250	0.0084	0.0107
Charadriiformes	Charadriidae	Vanellus resplendens	Avefría Andina	0.0000	0.0169	0.0000	0.0000	0.0043
Cathartiformes	Cathartidae	Vultur gryphus	Cóndor Andino	0.1351	0.0339	0.0333	0.0336	0.0577
Passeriformes	Thraupidae	Xenodacnis parina	Azulito Altoandino	0.0450	0.0339	0.0083	0.1765	0.0662
Columbiformes	Columbidae	Zenaida auriculata	Tórtola Orejuda	0.0721	0.0085	0.0000	0.0504	0.0321
Passeriformes	Passerellidae	Zonotrichia capensis	Gorrión de Collar Rufo	0.5766	0.4407	0.3333	0.9412	0.5726
Nota: Lista taxonó	mica actualizada seg	Nota: Lista taxonómica actualizada según la Lista de aves del Perú (Plengue, 2024)	yue, 2024).					

¹ Laboratorio de Ecología de Procesos. Departamento de Biología / Facultad de Ciencias / Universidad Nacional Agraria La Molina (UNALM). Av. La Molina s/n, Lima 12,

² ORCID: 0000-0001-9501-3346. Autor de correspondencia: julio.salvador.r@gmail.com. ³ ORCID: 0000-0003-2362-1339. zquinteros@lamolina.edu.pe. ⁴ ORCID: 0000-0002-4880-6922. esi@lamolina.edu.pe.