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1. Introduction

All kinds of exotic options arise one after another in the 
environment of volatile financial market. Asian power options are 
successful. They have become widely used in the fields of stock, 
commodity, energy and foreign exchange. Kemna and Vorst (1990) 
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A B S T R A C T

A framework for pricing Asian power options is developed when the underlying asset follows a jump-
fraction process. The partial differential equation (PDE) in the fractional environment with jump is cons-
tructed for such option using general Itô’s lemma and self-financing dynamic strategy. With the boundary 
condition, an analytic formula for the option with geometric average starting at any time before maturity 
is derived by solving the PDE, and the option with arithmetic average is evaluated in Monte Carlo simula-
tion using control variate technique with the help of the above analytic solution. Overwhelming numerical 
evidence indicates that the technique proposed is computationally efficient and dramatically improves the 
accuracy of the simulated price. Moreover, this study will pave a novel way to copy with the option con-
tracts based on thinly-traded assets like oil, or currencies or interest rates.
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R E S U M E N

Se desarrolla un marco para tasar las opciones energéticas asiáticas sometiendo el valor del activo 
subyacente a un método de fracciones discontinuas. La ecuación en derivadas parciales (EDP) en el entorno 
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apoyadas en la citada solución analítica. Hay abrumadora evidencia numérica de que la técnica propuesta 
es eficiente en tiempo de cálculo y mejora espectacularmente la precisión del precio simulado. Es más, este 
estudio abrirá un nuevo camino que seguir en los contratos de opción de compra basados en bienes tan 
poco negociables como el petróleo, las divisas o los tipos de interés.
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proposed an analytic expression for Asian options with geometric 
average using the partial differential equation (PDE) approach, on 
this basis, geometric average as control variable employed in the 
Monte Carlo simulation method (Boyle, 1977) was used to obtain 
satisfactory result for pricing Asian options with arithmetic 
average. Chen and Lyuu (2007) came up with a close-form solution 
for arithmetic Asian option using the approximation of arithmetic 
average through geometric average appeared. The approximate 
approach works as well as the Monte Carlo simulation approach 
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but accuracy remains problematic for high volatility and/or long 
maturity cases. In addition, lattice binomial method (Hull & White, 
1993; Neave & Turnbull, 1993) has been proposed to handle Asian 
options. But it has a dramatic computational cost because a large 
number of possible realizations of the payoff must be considered. 
Among the above most common methods to price Asian options, 
Monte Carlo method is rather simple to implement and can provide 
standard errors for the estimates to measure quality, and it further 
achieves a satisfactory level of accuracy with the enhancement of 
control variate technique for more complex arithmetic average 
option (see Boyle et al, 1997). At the same time, the analytic 
solut ion of the Asian opt ion with geometr ic averaging is 
indispensable in the control variate technique and PDE approach 
(Alziary et al., 1997; Zhang, 2001) provides an accurate result for 
geometric average option without computationally expensive 
when the PDE to be solved has three or four independent variables. 
As far as power option is concerned, Blenman and Clark (2005) 
explicitly solve for the price of the power option to exchange one 
asset for another under the equivalent martingale measure in 
which they specified that the price of power call is equal to the 
price of the power exchange option when the power of another 
asset is zero. 

Most of the academic researches on such exotic options assume 
that the underlying asset evolves as a continuous diffusion process. 
This implies that logarithmic returns of the asset are normal random 
variables. However, empirical evidences in Jorion (1988), Bates 
(1996), Pan (2002), Chernov et al. (2003), and Eraker (2004) indicate 
the presence of discontinuous jump in asset price when significant 
new information or catastrophic events arise. The jump-diffusion 
process is widely used to model jumps of the price movement and 
was introduced to option evaluation by Merton (1976) and Gukhal 
(2004). In recent years, many empirical studies on capital market 
also show that the logarithmic returns on financial assets are not 
normally distributed but the distribution with excess kurtosis and 
fat tail. Moreover, price series on financial assets are not stochastic 
motion but long-range dependence. Peters (1989) found the fractal 
structure and non recurrent phenomenon in both stock and 
exchange rate market and proposed the hypothesis of fractional 
market. Fractional Brownian motion, as a family of Gaussian 
processes, can give a satisfactory description of the price dynamics 
of the underlying asset because it has two important properties of 
self-similarity and long-range dependence. Considering fractional 
Brownian motion is neither a Markov process nor a semi martingale, 
Duncan et al. (2000) built up the fractional-Itô-integral to analyze it. 
Furthermore, Hu (2003) proofed that the option market under the 
fractional Brownian motion is perfect without arbitrage opportunity 
using the Wick integration and gave European option pricing 
formula at arbitrary time. Indeed, some authors have used the 
fractional Brownian motion to capture the behavior of underlying 
asset and to obtain fractional Black-Scholes formulae for pricing 
options including Necula (2002), Bayraktar et al. (2004) and Meng 
and Wang (2010).

To better describe the evolution of asset price, the combination of 
Poisson jumps and fractional Wiener process is introduced in this 
paper. The jump fractional process is consistent with an efficient 
market where major information arrives infrequently and randomly. 
In addition, this process is capable of capturing the empirically 
observed distributions of asset price changes that are leptokurtic, 
skewed, long memory and have fatter tails than comparable normal 
distributions, and provides a good explanation for volatility smile 
effect of log normally based Black-Scholes model. That is, the implied 
volatility varies with moneyness and maturity.

The problem of pricing option when the underlying asset value is 
driven by a jump fractional process was solved by Xiao et al. (2010) 
who derived a pricing model for currency option value. Things are 
more complicated in the case of exotic path-dependent option such 

as Asian power options developed in this paper whose payoff 
depends on the geometric or arithmetic average of the underlying 
asset raised to power. Such option represents a simultaneous 
generalization of Asian options as well as power option both of 
which play an important role in the risk management and incentive 
contract (see Zhang, 1997, Tompkins, 1999). The average feature 
embedded in power option makes Asian power option less subject to 
price manipulation thus hedging nonlinear risk arising in option 
positions from changing level of implied volatility and smoothing 
randomness inherent in the stock price so that the managers can be 
evaluated more fundamentally in the incentive contract for indexed 
executive option compensation. Despite many literatures on Asian 
option, there is litter work on Asian power option.

The objective of this paper is to study the pricing of Asian power 
options with geometric and arithmetic. Meanwhile we capture the 
behavior of the underlying asset using the jump-fraction process 
and follow the control variate technique whose chief advantage is its 
high accuracy and efficiency. The outline of the rest of the paper is as 
follows: The next section derives the analytical formula for the 
Asian power options with geometric average using PDE approach 
after giving the assumption of pricing environment. Section III 
demonstrates how the analytical solution as control variable is 
implemented in the Monte Carlo simulation to obtain an accurately 
simulated price of the Asian power option with arithmetic average. 
Conclusions are presented in the final section.

2. The valuation model

Consider a complex and f lexible f inancial economy where 
information arrives both continuously and discontinuously. This is 
modeled as a continuous component with the features of 
“asymmetric leptokurtic” and “long memory” and as a discontinuous 
component with abnormal fluctuation in the price process. Assume 
that the asset pay dividends, the price process can hence be specified 
as a superposition of these two components and can be represented 
as;

 (1)

where m t and q t are time-dependent parameter respectively 
denoting expected yield rate and dividend rate. s is volatility; Bt 

H  
is a fractional Brownian motion with Hurst parameter H∈(0, 1) 
which is Centered Gaussian process with mean zero and covariance 

 ; Qt is a Poisson process with intensity l, 
dependent of Bt 

H, Nt is Poisson compensation process and equals 
Qt–lt.

Theorem 1 Set Wt=Bt
H + Nt, ƒ(t,f) ∈ C1,2 (R+ × R → R) and ƒ(t,Wt), 

 , , and   belonging to 

L2(P), then

f (t,Wt) = f(0,0) +  (2)

Proof: See Appendix A
Theorem 2: The solution of the stochastic differential equation (1) 

equals

 (3)

Proof: Let

, then dSt = df(t,Wt), 

the theorem can be proven from Theorem 1.
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Theorem 3: Consider an Asian power option with contingent 
claim process V(St, It) ∈ C1,2 (R+ × R → R) , written on the risk asset 
following (1), the partial differential equation in the jump fractional 
environment is

 (4)

Proof: Since Asian power option is path-dependent option whose 
price is related to path factor besides time and the underlying asset. 
We introduce a new variable , a >1.

Let the option price at t (0 ≤ t ≤ T) be V (St It, t) the option value is 
path-dependent on It but it is fundamentally driven by the original 
underlying assets in (1), whose dynamics is derived by applying 
Lemma 1 and Lemma 2.

We replicate the option by constructing the hedging asset 
portfolio composed of the risk asset St. And bond Bt with riskless 
interest rate r ut

0 and ut
1 represents the position of risk asset and 

riskless asset held in the portfolio, then the wealth process 
V = ut

0Bt + ut
0St. Using self-financing dynamic trading strategy:

dV = ut
0rtBtd t + ut

1dSt + qtut
1St dt

Consequently we can obtain the result of Theorem 3.

3. An analytic formula for Asian Power Option with geometric 
average

Because the geometric average of a so assumed variable remains 
in the family of the Itô process, we price a European-style Asian 
power option on geometric average with maturity T and strike price 
K by solving the partial differential equation (4).

Given the boundary conditions of call option 

V(ST, IT, K,T)=max(IT −K,0) (5)

we apply the following transformation:

 (6)

V(St, It, t) = F(x,t) (7)

to equation (4) and (5) to yield

 (8)

F(x,T) = max(ex – K,0) (9)

where equation (8) after an appropriate change of variables, becomes 
a classical heat equation (see, e. g., Daly & Logan, 1998). Further, we 
apply the following transformation

 (10)

and

 (11)

 (12)

to equation (8) and (9) to obtain

 (13)

 (14)

The solution to equations (13) and (14), which has been verified 
by us using Green’s function approach, takes the following form

 (15)

where: N(–) is the cdf of a standard normal distribution.
Thus the solution to equations (4)−(5) can be written as

 (16)

where the function U(y, z) is given by (15), with

By doing some algebra, the solution to our problem (4)−(5) can be 
further written in the following result:

Proposition 1. The analytic pricing formula of a geometric Asian 
power call option with maturity T and strike K , path factor I t , power 
a, written on an asset following Eq. (1) is given from the solution to 
equation (4)−(5), i.e.

 (17)

where
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The above result can be extended to a forward-start-averaging 
Asian power option on geometric average price, we use time 
notations as follows: 0 = start of the option; t = option valuation 
date; T0 = start of the averaging; and T = maturity of the option or the 
end of the averaging. We assume 0 ≤ t ≤ T0 < T, with the forward-
start-averaging taken over [T0, T]. The approach is to determine 
option price at T0 and evaluate it discounted expectations at t by 
integration, the final result is stated below (see Appendix B for the 
derivation):

Corollary 1: The analytic pricing formula for the forward-
start-averaging call option for geometric Asian power starting at T0, 
and expiring at T, with strike price K, power a, written on an asset 
following Eq. (1), is

 (18)

where

  

The put case can be derived in the same way as proposition 1. 
On the basis of boundary conditions P(ST, IT, K,T)=max(K − IT,0), we 
solve equation (4) and obtain the price of Asian power put option 
P(St, It, t).

Proposition 2. Geometric Asian power put option with maturity 
T and strike K, path factor I t, power a, written on an asset following 
Eq. (1) whose analytic solution is given by

 (19)

where St*, It, r*, sl*, sH* are as defined as proposition 1.
Expression for the case of forward-start-averaging put option can 

also be derived in a similar manner. Thus, the price of such option is 
presented as follows:

Corollary 2: The analytic pricing formula for the forward-
start-averaging put option for geometric Asian power starting at T0, 
and expiring at T, with strike price K, power a, written on an asset 
following Eq. (1), is

 (20)

where St*, It, r*, sl*, sH* are as defined as Corollary 1.

It is straightforward to verify that familiar pricing formulas 
obtain as special cases of (17)-(19). For example, for H=0.5, a=1, 
(17)-(19) reduce to the familiar jump-diffusion formula for the price 
of geometric Asian call and put options with fixed strike price K. 
Moreover, when l=0, parameter q and r is constant, (17) and (19) 
simplify to the standard Asian option with geometric average on 
assets driven by geometric Brownian motion which is consistent 
with the result from Kemna and Vorst (1990).

4. Simulated price of Asian power option with arithmetic 
average

The pricing of European path-dependent option can always be 
implemented using the simple and efficient Monte Carlo simulation. 
The approach becomes the last resort especially when there is no 
analytical formula available for the pricing of Asian power option 
with arithmetic average because the arithmetic average of so-called 
assets does not remain in the family of the Itô process. One important 
issue in implementing the simulation method is the accuracy of the 
calculated option price which is measured by sample variance, 
and the relationship between them is negative; that is, the accuracy 
of the option increases as the variance decreases. The number of 
simulation runs depends on the accuracy. In general, the accura-
te simulated price can be obtained only by large number of 
simulation runs without adjusting the sampling method. To reduce 
the variance and achieve high accuracy of the simulation results 
for arithmetic Asian power option within a feasible number of 
simulation runs, the implementation of a control variate technique 
in the Monte Carlo simulation approach is necessary.

The control variate must be the financial derivative with positive 
relationship of the simulated derivative and derived analytical 
solution. The geometric average can serve not only as a lower bound 
for the arithmetic average but also as a control variate in the 
simulation approach. Thus, the analytical formula in proposition 1 
and proposition 2 with geometric average becomes indispensable in 
the simulation approach to pricing of the options with arithmetic 
average because the formula plays an integrated part in the control 
variate technique. 

We focus on the price at the inception (t=0, denoted by AV(S0, K, 0, 
T) of a European style call Asian power option of arithmetic average 
with maturity T in the simulation that follows. The arithmetic mean 
over [0,T] is simply 

 (21)

To implement the simulation, we take the discrete approximation 
of A defined as follows:

 (22)

where Tj=j×(T/n) with T0=0, Tn=T and j =1,2,…..,n.
Following the risk-neutral valuation argument by Cox and Ross 

(1976), the price of a European style call Asian power option of 
arithmetic average can generally be expressed as follows:

 (23)

where EQ is the expectation in the risk-neutral world (see Harrison & 
Kreps, 1979; Harrison & Pliska, 1981).

Assume the current time be T0 and the terminal time be Tn=T, then 
the sampling interval observed twice is DT= (Tn–T0)/n thus Tj=T0+j×DT 
for j = 1,2,…,n. 

+

+
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Let R(Tj)=ln[Sa(Tj)/Sa(Tj–1)], from theorem 2, we have

 (24)

Under the risk-neutral probability measure, we can replace 
the drift coeff icient m by the instantaneous r iskless rate r, 
a n d  h e n c e  R ( T j)  i s  n o r m a l l y  d i s t r i b u t e d  w i t h  m e a n s 

 , variances . 

Thus, the random sequence Sa(T1), Sa(T2),…., Sa(Tn) can be generated 
by the following processes:

 (25)

where kj is driven by a standard normal distribution. As a result, k1, 
k2,….., kn consist of one dimensional sequence of independent 
drawings from the standard normal distribution.

We implement a total of M simulation runs. For every run, a 
realization of a one-dimensional sequence can be obtained and 
a single simulated option price can be calculated as follows,

 (26)

The simulation estimate of the option price E[X(T)] in (23) is 
simply the expected value of X(T) over M runs which is denoted as

 (27)

and the variance of X(T) is denoted as

 (28)

Certainly, derivative houses would like to provide prices of their 
derivative products that are as fair as possible in volatile market. 
Fortunately, a more accurate simulation estimate can be achieved 
by using the control variate technique. In order to implement the 
control variate technique to CAV(S, K,0,T), there should be available 
a random variable Y(T), which is driven by the same random 
sequence Sa(T1), Sa(T2),….,Sa(Tn) as for X(T) in Eq. (26) and is a close 
approximation of X(T) but has an analytical expression for its 
expected value, E[Y(T)]. Therefore, we choose the following random 
variable as the control variable:

 (29)

where G is defined as the following discrete approximation:

 (30)

It is easy to notice that E[Y(T)] is the expected price of Asian 
power call with geometric average and its analytical solution is 
already given by proposition 1 and its simulation estimate of the 
option price E[Y(T)] is denoted as:

 (31)

We run the simulation to obtain the estimated value of 
E[X(T)-Y(T)]. Because X(T) and Y(T) are closely related random 
variables, the estimation errors of both X(T) and Y(T) that are 
bound to occur during the simulation should be very similar in a 
well-controlled simulation test. As a result, E[X(T)-Y(T)] incurs very 
small estimation errors. To obtain the call option price, we take the 
sum of the simulated result, E[X(T)-Y(T)], and the analytical value, 
E[Y(T)], from proposition 1. It is worth mentioning that there is an 
inevitable small bias between the continuous-time analytical 
value and the simulated value 

_
Y(T) of E[Y(T)] due to discrete 

sampling. Nevertheless, such a bias is much offset by a similar bias 
for E[X(T)] in simulated E[X(T)-Y(T)]. Thus, the estimated E[X(T)] 
using the control-variate technique is, strictly speaking, of 
continuous time-type and has reduced variance since it bears the 
same small estimation errors as E[X(T)-Y(T)] does. Therefore, 
the more accurate price of Asian power call option with arithmetic 
average is given by

CAV(S, K,0,T)=E[X(T)]=  (32)

The variance of X(T) with control variable Y(T) is computed by

 (33)

Where ŝ2 is the variance of stochastic variable X(T)-Y(T), the sum 
of simulation runs for s2 exceed the simulation runs for ŝ2 if ŝ2 = s2. 
That is, the accurate simulated price can be obtained by lower 
simulation runs with control variate technique than without control 
variate technique in the Monte Carlo approach. In conclusion, a more 
accurate simulation results can be achieved by using the control 
variable technique which improves the computational efficiency of 
the Monte Carlo approach.

The price of put option with the terminal payoff of max (K–A(T),0), 
can be obtained by the put counterpart of (32) and expressed as 
 follows:

PAV(S, K,0,T)=E[X′(T)]=[
_
X′(T) – 

_
Y′(T)] + P (34)

where 
_
X′(T) and 

_
Y′(T) are defined as (27) and (31) in which X(T) and 

Y(T) are respectively, replaced by X′(T) and Y′(T), and they are the 
case of (26) and (29); P is given by proposition 2.

Table 1 reports additional example for pricing arithmetic Asian 
power call option on underlying asset driven by jump fractional 
process by using control variate technique in the Monte Carlo 
simulation described above. The focus of this table is to examine 
the validity and accuracy of such technique for the exotic Asian 
option in the fractal jump environment. The option contract is 
initiated today and the average period is the full term to maturity. 
The asset current prices is 40 USD, time to maturity is four months 
or 1/3 year, dividend yield is 0.005 per annum, the parameter of 
Hurst exponent H and jump intensity l is estimated as 0.65 and 
0.5136 respectively using famous and simple R-S analysis 
methodology (see Peters, 1989) and cumulated imitated method 
(see Beckers, 1981), and the power a is 1/2, the time steps n is 88, 
the total of simulation runs is 10000, and other various numerical 
inputs such as risk-free rate r, instantaneous volatility s and strike 
price K mainly follows the literature (e.g. Kemna & Vorst, 1990). The 
forth column V is the analytical solution of Asian power call option 
with geometric average given by proposition 1. The fifth column 
displays 

_
X, the simulated price of Asian power option on arithmetic 

average with the Monte Carlo simulation and the sixth column s 
shows the standard error of simulated 

_
X; the seventh column CAV 

and eighth column s/ respectively represent the simulation estimate 
of Asian power option on arithmetic average and the standard 
error of simulated CAV with the control variate technique employed 
in the Monte Carlo simulation. The last two columns compare 
the analytical solution V with the simulated price CAV and show the 
standard error ŝ between them.

From the results in Table 1, it is evident that a more accuracy of 
the simulation result for Asian power option on arithmetic average 
within a feasible number of simulation runs can be achieved by 
using control variate technique in the Monte Carlo. It is evident that 
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standard error s/ of simulation estimate using geometric average 
price V as control variable is less than s without using control 
variable both in-the-money, out-of-the-money and at the money 
option. In view of time efficiency, control variate technique can 
improve the computational speed of the Monte Carlo approach. This 
is because we have to implement far more than 10000 simulation 
runs to achieve the accurate simulation estimate without using 
control variable; on the contrary, we can achieve the similar 
accurate simulated price only by 10000 simulation runs using 
control variable. The evidence of substantial control variable is 
over whelming. The accuracy of simulated price is high with large 
riskless rate and high volatility. For example, in Table 1, with the 
following set of inputs, s = 0.4, K=35USD, r= 0.03 and 0.05, 
the standard error of the estimated price drops to 0.001547 and 
0.001614 from 0.043085 and 0.044135 for the estimated price 
of the option without using the control variable; that is, the 
standard error reduces 53 and 54 times with using control variable. 
With the same set of above inputs but s=0.2, the standard error for 
the estimated price of the same option with control variable and 
without control variable is respectively 0.000355, 0.000402 
and 0.024259, 0.025972; thus, the standard error reduces 64 and 
65 times with using control variable technique. Furthermore, it is 
clear from Table 1 that the price of Asian power option with 
arithmetic average CAV always exceeds the option with geometric 
average V, and difference between them decreases as parameter K 
decreases from 35 to 45; however, difference between them 
gradually increases as volatility and riskless rate increase. It shows 
the estimated bias between geometric average and arithmetic 
average at discrete time is very low with small volatility and riskless 
rate. In other words, the difference between simulated price of 
Asian power option with arithmetic average and analytical solution 
for Asian power option with geometric average is very low. But the 
above estimated bias increases without using control variable 
technique, further the difference between simulated price with 
control variable technique for arithmetic Asian power option and 
analytical solution for geometric Asian power option increases. The 

estimated standard error of ŝ without using control variable 
technique is as same as s/ with using control variable technique, 
which examined the equation of (33).

In the following set of numerical experiment presented in Table 2, 
we compare the theoretical prices of arithmetic Asian power option 
on the underlying asset driven by the different dynamic process: 
jump-diffusion process (H=0.5, l=0.5136, hereafter J-D), fractional 
Brownian motion process (H=0.65 l=0, hereafter FBM), and our 
jump fractional process (H=0.65, l=0.5136, hereafter JFBM1 or 
l=6.25, hereafter JFBM2). The riskless rate r is 0.05 and instantaneous 
volatility s is 0.4.

By comparing columns J-D, FBM, JFBM1, and JFBM 2 in Table 2 for 
the maturity on 1/3 and 2 cases, we have the conclusion that the call 
option prices obtained by three valuation processes are close to each 
other. This is mainly because that the jump parameters are very low. 
Meanwhile, we can investigate that the prices given by the FBM are 
the smallest among another valuation process; apparently the prices 
obtained by the JFBM2 are largest among the price obtained by J-D, 
FBM and JFBM1. The main reason is that the call price is a decreasing 
function of Hurst exponent H and an increasing function of jump 
parameter l. Moreover, we investigate that the magnitude of the 
difference between option prices computed by these three valuation 
processes (J-D, FBM, JFBM2) increases in the high jump parameters 
cases as time to maturity increases, and the magnitude of the 
difference ratio in prices is higher for out-of-the-money options in 
the time to maturity case of T=2. We further find the prices obtained 
by different valuation processes is positive related to power a, when 
a=1, the standard arithmetic Asian option is obtained in the jump 
fractional process, which extends the result presented by Kemna 
and Vorst (1990).

5. Conclusions

One way for financial managers to mitigate financial distress 
costs is to use exotic derivatives, thus, risk management is closely 

Table 1
Pricing results of Asian power option under the jump-fraction process

s K V
_
X s CAV s/ CAV−V ŝ

r=0.03 0.2 35 5.017632 5.035502 0.024259 5.065995 0.000355 0.048363 0.000355
40 1.062326 1.048939 0.015694 1.074776 0.000358 0.01245 0.000358
45 0.033861 0.036987 0.003176 0.036541 0.000298 0.00268 0.000298

0.4 35 5.338798 5.378407 0.043085 5.406478 0.001547 0.06768 0.001547
40 2.093466 2.075383 0.032875 2.116426 0.001585 0.02296 0.001585
45 0.605341 0.622643 0.018453 0.612331 0.001586 0.00699 0.001586

r=0.05 0.2 35 5.113351 5.152631 0.025972 5.164421 0.000402 0.05107 0.000402
40 1.125681 1.173367 0.016795 1.140231 0.000401 0.01455 0.000401
45 0.034595 0.037792 0.003198 0.042745 0.000308 0.00815 0.000308

0.4 35 5.406175 5.415923 0.044135 5.483565 0.001614 0.07739 0.001614
40 2.143631 2.131265 0.034081 2.174781 0.001652 0.03115 0.001652
45 0.613368 0.590859 0.016893 0.633378 0.001513 0.02001 0.001513

Table 2
Comparison of arithmetic Asian power option among different dynamic process

Power a K Time to maturity, T=1/3, t=0 Time to maturity, T=2, t=0

J-D FBM JFBM1 JFBM2 J-D FBM JFBM1 JFBM2

1/2 35 5.562942 5.385347 5.433565 5.725482 8.19586 7.686874 7.790765 10.11685
40 2.230312 2.155984 2.174781 2.428634 5.143763 4.765934 4.896076  7.661433
45 0.749854 0.629659 0.633378 0.854321 3.214738 2.849832 3.098857  5.039127

1 35 5.838963 5.684593 5.703281 5.919863 8.464971 7.946875 8.017985 10.32176
40 2.594938 2.459854 2.476934 2.708945 5.415489 5.015431 5.175623  7.924365
45 0.904174 0.81329 0.880521 0.985487 3.520346 3.145933 3.387642  5.548921

3/2 35 6.179845 6.008753 6.098531 6.267908 8.788554 8.127695 8.245872 10.67532
40 3.10278 2.998675 3.019853 3,248752 5.74529 5.305648 5.414487  8.237612
45 1.147651 0.999887 1.007643 1.218435 3.799944 3.334465 3.524789  5.809439
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linked to exotic derivatives and has become increasingly important 
for modern corporations to provide great value-added potentials. 
This paper presents a new variety of financial derivatives that 
non-trivially bridge the Asian option and power option which play 
essential roles in financial market. The valuation of such option is an 
active area of research. Empirical evidence shows the presence of a 
jump component in addition to the fraction component in the 
evolution of asset prices. We study the control variate technique to 
the valuation of Asian power option with arithmetic average under 
the jump-fraction process. In particular, we extend the partial 
differential equation of Kemna et al. (1990) to jump-fraction process 
and derive the analytical pricing formula for the Asian power option 
with geometric average, which may start at any time before 
maturity. We then price the option with arithmetic average in 
conventional Monte Carlo simulations. The overwhelming numerical 
evidence demonstrated in the paper confirms that the control 
variate technique with help of analytical formula of the option with 
geometric average dramatically improves the accuracy of the 
simulated price and simulation efficiency. The accuracy of simulated 
estimate is high as large riskless rate and low volatility and the 
estimated results are always a little more than analytical solutions 
of Asian power option with geometric average. Furthermore, the 
numerical result is also provided to show that the power can adjust 
the option price to satisfy risk-hedging and jump fractional process 
will be more efficient for pricing Asian power options than jump 
diffusion process and fractional Wiener process when the time 
maturity and jump are large enough.
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Appendix A. Proof of the theorem 1

Setting ti as the jump time in the intervals [0, t] where i is the 
number of jump and Wt=Bt

H+Qt−lt. When i equal 1, using fractional 
Itô equation, we have

The change of f(t,Wt) at time t1 equals f(t1,Wt1)− f(t1,Wt1-) thus

 +

+ 

Consider the number of jumps in the intervals [0, t] follows the 
Poisson process, hence

 +

+ 

Say g(f) ∈ C2 (R → R), and it is fact that (dQt, dQt), using the general 
Itô equation in g(Qt), we have,

Note that Wt=Bt
H+ Qt−lt, hence 

Appendix B. Derivation of the pricing formula in corollary 1

Note that for 0 ≤ T0 ≤ t ≤ T, we can invoke the “plain vanilla” 
pricing formula of proposition 1.

We already know form proposition 1 that the option price at 
t=T0 is as follows:

 (15)

where

;  

Thus, the option price at t<T0 is simply the t-time value of a 
derivative with a terminal value at T0 determined by the above 
formulae, i.e.:

It follows that the option price can be obtained by solving the 
following integral

where N is the normally distributed density function. Through some 
tedious algebra, we have the forward-start-averaging option 
formula written as Corollary 1 in the paper.
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