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Abstract

Purpose – This paper measures different market risk impacts on options portfolios under the new
Fundamental Review of the Trading Book (FRTB) regulation, issued in Basel and coming into effect in 2023.
Design/methodology/approach – This paper first suggests an algorithm for implementing the FRTB
standardised approach via the sensitivities-based method to estimate a portfolio’s risk capital and presents an
illustration applied to an option position. Second, it proposes a methodology to estimate the expected shortfall in
options portfolios from theFRTB internalmodels approach. In this regard, an application is developed tomeasure
expected shortfall (ES) and value at risk (VaR) impacts under FRTBversus conventionalVaR in a currency option
position by considering stress scenarios from the 2007–9 and 2020–1 crises and back-testing procedures.
Findings – The suggested algorithm satisfactorily captures impacts via the sensitivities-based method, and
higher risk capital demands are expected for emerging economies. Also, the planned FRTB methodology to
measure ES and VaR is appropriate; in particular, historicalmetrics performwell. Astonishingly, their revealed
impacts are more significant under the 2020–1 pandemic crisis than the 2007–9 financial crisis.
Originality/value – The proposals developed weave a communication bridge between the standardised and
internal approaches of FRTB regulation, which can be scaled up technologically and institutionally.
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1. Introduction
Basel Committee on Banking Supervision (BCBS) consolidated in 2019 the Fundamental
Review of the Trading Book in BIS (2019) (FRTB) to improve the design and consistency of
capital standards for market risk. FRTB regulation introduces a new approach to the current
market riskmanagement models, whose implementation is planned as of 1 January 2023. The
regulation incorporates three fundamental aspects.

The first aspect differentiates between the trading book and the banking book. It
accurately identifies which instruments are assigned to each and avoids arbitrage
opportunities among the estimated capital requirements.

Market risk
impacts on

options under
FRTB

JEL Classification — C5, G18, G32
© Carlos Alexander Grajales and Santiago Medina Hurtado. Published in Journal of Economics,

Finance and Administrative Science. Published by Emerald Publishing Limited. This article is published
under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute,
translate and create derivative works of this article (for both commercial and non-commercial purposes),
subject to full attribution to the original publication and authors. The full terms of this licence maybe
seen at http://creativecommons.org/licences/by/4.0/legalcode

The authors thank the reviewers for their careful observations and suggestions.
Conflict of interest: The authors declare that they have no conflict of interest.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2077-1886.htm

Received 14 December 2021
Revised 20 February 2023

Accepted 23 February 2023

Journal of Economics, Finance and
Administrative Science

Emerald Publishing Limited
2077-1886

DOI 10.1108/JEFAS-12-2021-0268

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/JEFAS-12-2021-0268


The second change considers the internal models approach (IMA) to measure market risk,
a scheme that the regulator must previously approve. At this point, the regulation replaces
the value at risk (VaR) and stressed value at risk (sVaR) measures established by Basel 2.5.
Instead, it estimates the total capital requirement based on the aggregation of the following
three requirements: expected shortfall (ES), non-modellable risk factors (NMRF) and default
risk capital (DRC).

The third aspect is the mandatory adoption of the standardised approach (SA) to
determine capital for market risk. The total capital requirement is, in turn, defined in terms of
the aggregation of the following three expositions: sensitivities-based method (SbM) through
the measure of delta, vega and curvature risks; default risk capital (DRC); and residual risk
add-on (RRAO).

In BCBS (2019), based on a sample of banks, the future impact of FRTB implementation
was estimated in January 2019. From there, risk-weighted assets increased from 4.4% in
Basel 2.5 to 5.3% in FRTB, concerning total risk-weighted assets in Basel III. In addition, the
average increase in risk capital is 22% compared to Basel 2.5. In FRTB, the risk capital under
SA is considerably higher (over 60% on average) than the respective capital under IMA.
Moreover, further increases in risk capital are estimated for small banks using a simplified
version of the standardised approach.

Some progress has been made regarding the study of market risk. For example,
concerning the FRTB internal models approach,ESmetric is a consistent riskmeasure based
on Artzner et al.’s (1999) and Rockafellar and Uryasev’s (2000, 2002, 2013) works.
Furthermore, a comparative analysis between the best knownVaRmetric andES can be seen
in Embrechts et al. (2018, 2020), and different estimation methods and ES models are
documented, for example, in Patton et al. (2019), Nadarajah et al. (2014), Chen (2008) and
Scaillet (2004). Further, FRTB requires the implementation of back-testing procedures to test
the reliability of VaR measures. In this direction, a comprehensive and practical study of
different kinds of tests appears in Nieto and Ruiz (2016). Finally, Men�endez and Hassani
(2021) present several methodologies to achieve data augmentation in the tails of portfolio
loss distributions to ensure robustness inES estimations. They state thatES riskmeasure, as
an FRTB benchmark, implies the renunciation of elliptic distributions for modelling the
losses.

In turn, Laurent et al. (2016) analyse the theoretical foundations and implications of the
default risk capital under the framework of the FRTB internal models, particularly in
portfolios sensitive to credit risk. In Orgeldinger (2018), some recent advances are also
presented to implement the FRTB regulation industrially under SA and IMA. The author
defines implementation stages; analyses technological issues, unprecedented computational
demands and associated costs; and highlights the need to reconcile SA with IMA models. In
line with the above, Pederzoli and Torricelli (2021) estimate and compare FRTB impacts on
the capital requirement under both approaches, SA and IMA, based on a stylised portfolio
with different risk factors. They report a more significant impact on banks adopting SA. In
turn, Porretta and Agnese (2021) examine FRTB impacts on capital the requirement for
different banking groups, classified according to their tier-1 capital size. They analyse risk
capital changes from the current to the revised regulation and for both approaches, SA
and IMA.

However, under FRTB, logical reasonings should be put forward to support possible SbM
implementations for a general portfolio. Logical reasonings respond to the requirement of
building quantitative relations between SA-SbM and IMA-ES, as well as measuring risk
capital impacts via SbM (Orgeldinger (2018) and Porretta and Agnese (2021)). Additionally,
ES metric’s statistical performance and risk capital impacts should be investigated,
particularly for financial options portfolios. Concerning the above literature, although data
augmentation inMen�endez andHassani (2021) is a viable way to obtain reliableESmeasures,
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using periods of financial crises is essential for constructing stress scenarios under internal
models.

Consequently, this article develops two proposals. First, it proposes an algorithm from the
FRTB standardised approach to estimate the market risk capital relative to delta, vega and
curvature risks through the sensitivities-based method. This systematic reasoning is related
to and extends the work of Orgeldinger (2018) since the algorithm enables to foresee
fundamental conditions for its implementation, such as the involved processes, its complexity
and its high computational demand. In detail, for any portfolio, the algorithm allows us,
according to the new regulation, to identify its risk factors and risk classes involved, estimate
sensitivities and correlations between all the assets, perform risk aggregation and financial
stress analyses, and calculate the overall risk capital. Also, it helps to analyse the interactions
between the parts of the SbM scheme and experiment with hypothetical portfolios tomeasure
impacts on risk capital. Furthermore, the algorithm is a design that can connect to desirable
outcomes regarding risk capital levels or impacts, implying that it supports the creation of
knowledge rules in the financial risk management field.

Second, to build communication bridges between the standardised and internal
approaches under FRTB, amethodology is proposed to estimate theESmetric in a portfolio
of financial options and evaluate its performance and the risk capital impacts. The
robustness of our methodology is accomplished in three ways. First, it generates stress
scenarios with periods of crisis, which feed loss distributions with extreme data; second, it
adapts VaR and ES metrics to IMA; and third, it evaluates the metrics’ performances via
back-testing proofs. Risk capital impacts are studied by changing option tenors and
liquidity horizons. At this point, the methodology constitutes a formal adaptation of ES to
IMA for option portfolios. Furthermore, the proposed relationships between ES and FRTB
are a step forward in the literature that can become a technical document annexe in
BCBS (2019).

Subsequently, a numerical illustration is provided to promote an understanding of the
sensitivities-based method and estimate a portfolio’s specific impacts by following the
proposed algorithm. Then, for supporting evidence of the validity of our methodology, an
application is developed where the impact of ES and VaR under FRTB versus conventional
VaR is measured in a simple portfolio of currency options. This development considers stress
scenarios from the 2007–9 and 2020–1 crises and back-testing procedures.

The paper is organised as follows. Section 2 reviews the theoretical framework, and
Section 3 defines the methodology. Subsequently, Section 4 addresses the results, and the
most relevant findings are discussed in Section 5. The last section presents the conclusions
and limitations of the work.

2. Literature review
2.1 Market risk measures
2.1.1 Value at risk, VaR. The monetary measure (in dollars) $VaR for a portfolio over a time
horizon and confidence level α satisfies the equation,

p½loss > $VaR� ¼ 1� α (1)

If the loss is assumed to be −ΠR, where Π is the initial value of the portfolio and R its return
over the time horizon, then equation (1) is equivalent to

p½R < �VaR� ¼ 1� α; (2)

where VaR ¼ VaRα ¼ $VaR=Π and such risk measure is relative to the initial value of the
portfolio.
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2.1.2 Expected shortfall, ES. The internal models approach in FRTB has chosen to follow
the ES metric to quantify market risk. Conceptually and for simple computations, if −ΔΠ is
the loss portfolio from Π in a given time horizon, then ESα is the conditional expectation of
those losses that exceed VaRα in the loss distribution of −ΔΠ, where α is the confidence level
of the risk measure.

More precisely, following Rockafellar and Uryasev (2002), let us consider that x∈X ⊂Rn

represents the vector of assignments in portfolioΠ for a set of constraints X, and y∈Y ⊂Rm

denotes the vector of future values of mmarket variables that affect the portfolio profit and
loss. Then, the portfolio loss function can be represented as z ¼ f ðx; yÞ. Moreover, if pðyÞ is
the probability density of y over a time horizon T, then ESα for portfolio ΠðxÞ at T is
defined by

ESαðxÞ ¼
1

1� α

Z
f ðx;yÞ≥VaRαðxÞ

f ðx; yÞpðyÞdy (3)

where VaRαðxÞ ¼ minfγ ∈R : Ψðx; yÞ≥αg, and Ψðx; yÞ ¼
Z
f ðx;yÞ<γ

pðyÞdy.

Alternatively, other expressions that define ESα in terms of the VaR measure appear in
McNeil et al. (2005). Keeping their notation, these are given by

ESα ¼ 1

1� α

Z 1

α
VaRðLÞdu (4)

¼
E
�
LIL≤qαðLÞ

�
1� α

(5)

¼ EðLjL≤VaRαÞ (6)

where L is an integrable function with continuous distribution that represents the portfolio
losses, so that L ¼ −ΔΠ, and the expression IA is the indicator function of event A.

Additionally, from the works of Rockafellar and Uryasev (2002) and McNeil et al. (2005),
ESα can be obtained by appealing to the law of large numbers in terms of statistical orders
so that

lim
m→∞

Pbmð1−αÞc

j¼1

Lj;m

bmð1� αÞc ¼ ESα (7)

where fLj;mgmj¼1 is a decreasing sequence of statistical orders for the losses fLjgmj¼1, and b$c is
the floor function applied in the argument.

2.2 Basel FRTB regulation
The following body of concepts and relations is taken from BIS (2019).

2.2.1 IMA – ES. Now let us consider some features of IMA regarding the ES metric. The
corresponding risk capital is estimated in stressed market conditions, using data over
12 months of stress, at a confidence level of 97.5%, and with a time horizon that varies
depending on the liquidity of the risk variable or instrument under study.

The time horizons for liquidity are established as 10, 20, 40, 60 and 120 days. However, all
calculations are based on changes in risk factors across overlapping 10-day periods, which is
crucial since the samples produced are conceptually dependent.

Symbolically, if the risk factors are classified in bucket i according to the liquidity horizon
LHi established in FRTB, then the market risk ES metric adjusted for liquidity is given by
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ES ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ES

2
1 þ

X5
j¼2

 
ESj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LHj � LHj�1

10

r !2
vuut (8)

where ESi represents the ES risk for the risk factors in buckets i; i þ 1; � � � ; 5 by keeping the
risk factors in buckets 1; 2; � � � ; i− 1 constant.

Next, to obtain the capital requirement, it is necessary to estimate the so-called weighted
expected shortfall, WES, prescribed as

WES ¼ λEST þ ð1� λÞ
X
j

ESPj (9)

whereEST is theESmeasure of the entire portfolio andESPj is the partialESmeasure linked
to the trading table j. Finally, the capital CR for market risk on day t is

CR ¼ maxðWESt−1 þ NMRFt−1;mc WESavg þ NMRFavgÞ; (10)

where NMRF indicates the capital requirement of non-modellable risk factors.

The regulation agrees upon two performance tests (back-testing and profit and loss). The
first must be carried out in the banking book, while both tests must be carried out in the
trading book. Furthermore, in the trading book, the back-testing is based on the 1-day VaR
metric and at two confidence levels, 97.5% and 99%, which must be calibrated with actual
market data from the previous 12 months.

2.2.2 SA – SbM. FRTB regulation in the standardised approach includes the sensitivities-
based method, where the market risk capital is estimated through delta, vega and curvature
risks for the portfolio risk factors. Calculating such capital involves various tasks in which
risk classes are identified, and according to objective sensitivity, risk factors are grouped into
buckets or categories. Fromhere, the capital requirement (CR) is allocated by risk aggregation
mechanismswithin and between buckets, correlation stress analysis andwell-defined criteria
in each risk class.

Symbolically, using the same notation and formulation as that established in FRTB, if sk is
the net sensitivity of the portfolio instruments for each risk factor k and the sensitivity sk is
weighted by the weight RWk, then the weighted sensitivity sk, WSk, is given by

WSk ¼ RWksk; (11)

Consequently, the aggregation Kb of the delta or vega risk positions in the b bucket is
estimated by

Kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

 
0;
X
k

WSk þ
X
k

X
k≠l

ρklWSkWSl

!vuut (12)

where ρkl is the correlation betweenWSk andWSl. Also, the aggregation for delta or vega risk
among different buckets is calculated as

delta ðrespectively vegaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

b

K2
b þ

X
b

X
c≠b

γbcSbSc

s
(13)

where Sx ¼
P

kWSk for all risk factors k in bucket x, and γbc is the correlation between
buckets, provided the radicand is non-negative.
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For other complementary formulations, as well as those related to estimations of
capital requirement associated with curvature risk, see the regulation directly in
BIS (2019).

2.3 Back-testing in FRTB
A back-testing proof is a procedure, usually of a statistical nature, which evaluates the
accuracy of a risk measure from historical data. The VaRmeasure is the metric agreed upon
by FRTB regulation to be validated in a market risk management process. Specifically, these
tests will be based on 1-day VaR, at 97.5% and 99% confidence levels, and calibrated with
actual 12-month (250-day) market data.

2.3.1 Validation proofs. A set of eight statistical back-testing tests is referenced below to
validate a VaR metric, classifying the tests according to whether they are frequency,
independence or mixed.

(1) Frequency tests

� Traffic light (TL), see BCBS (1996, 2006, 2011).

� Binomial test (Bin), see an adaptation in Hull (2018).

� Unconditional coverage test (UC), see Kupiec (1995).

� Time until first failure (TUFF), see Kupiec (1995).

(2) Independence tests

� Conditional coverage independence (CCI), see Christoffersen (2012, 1998).

� Time between failures independence (TBFI), see Haas (2001).

(3) Mixed frequency and independence tests.

� Conditional coverage mixed (CC), see Christoffersen (2012, 1998).

� Time between failures mixed (TBF), see Haas (2001).

3. Method
3.1 FRTB standardised approach – sensitivities-based method
The different portfolio instruments in the trading book are related to risk factors and
determine their price. In turn, risk factors aremade to correspond to seven risk classes: interest
rate (GIRR), three types of credit spread (CSR), equity (stock exchange), commodities and
foreign exchange rate (FX).

Additionally, the different risk factors are grouped into buckets or categories in each risk
class. For example, in the equity class, suchbuckets can be definedbased on asset capitalisation
and membership to a particular industry sector and a developed or emerging market. Buckets
can also be specified according to a trading currency, the credit quality of an institution, the
type of a commodity and the exchange rate between two currencies, among others.

Subsequently, SbM requires estimating three risk exposures via delta, vega and curvature
for each factor. Regarding vega sensitivity, its risk-weighting considers the liquidity horizon
of the respective risk class to which the factor belongs.

According to FRTB regulation, sensitivities must be aggregated under prescribed
correlations, at bucket level and across buckets of the same class. Finally, the capital
requirement CR of the initial portfolio is calculated for each of the seven risk classes and then
added by a simple sum. The procedure is repeated in three correlation scenarios –low,
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medium and high– between the risk factors to consider correlation variations throughout the
portfolio in periods of financial stress. The final capital requirement is the highest result
obtained in the three scenarios.

Therefore, the logical structure of the processes involved in calculating capital
requirements under the FRTB sensitivities-based method is complex. Next, we suggest
Algorithm 1, which represents a preliminary version for a banking industry
implementation of the SbM programme. The algorithm partly extends the work of
Orgeldinger (2018) and is alignedwith the need to automatemodern standardised processes
in market risk management from 2023. The implementation could also facilitate
experimentation in calculating risk capital for hypothetical portfolios via FRTB SA SbM
regulation.

Algorithm 1 
 

Require:  
Ensure:  

{MAR 10.9} 
 {MAR 21.1} 

  3:   {MAR 21.6}
  for do
  5:       {MAR 21}
  for all  do

for all do
for all do

end for

for all do

end for

end for

end for

end for
 {MAR 21.7} 

The lines in Algorithm 1, except those containing loop processes, would lead to their own
algorithms. The amount of “for” cycles reflects the entire process’s high complexity and
computational demand. Comments in grey in lines 1, 2, 3 and 25 indicate specific items of the
FRTB regulation to appeal to carry out the corresponding process. The remaining lines are
the consequence of an integrated vision of Chapter MAR21 in FRTB.

Finally, lines 17, 19 and 25 involve, respectively, calculations for risk aggregation within
and across buckets, and the establishment of capital requirement by scenario analysis
according to correlations between buckets. Technical formulations were described and
referenced in Section 2.2.2.
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3.2 FRTB internal models approach – expected shortfall
We propose an adaptation of the traditional historical simulation method to estimate theVaR
and ES metrics for a financial option portfolio, consistent with FRTB ES conditions. In the
first instance, an estimation of the historical VaR, satisfying FRTB conditions, is formulated
for a portfolio of n financial options.

Definition 3.1. (Scenarios for option pricing). Consider a portfolio with initial value Π,
composed by n financial options, where the asset underlying the i-th option is Si,
i ¼ 1; � � � ; n. Denote the price of option i on day j by fi;j; and suppose today is
day m. If we have mþ N price observations for each option, it is possible to

estimatemfeasible price scenarios fNi;j;m of the option on daymþ N, defined so

that the j-th scenario is

fNi;j;m ¼ fi;m
fi;j

fi;j−N
; i ¼ 1; � � � ; n; j ¼ 1; � � � ;m (14)

Proposition 3.1. (VaR-historical for option portfolio). Assume today is day m, a set of m
price scenarios is generated for day mþ N for each option i in a portfolio
of n options, and the portfolio initial value is Π, where the scenarios are
built according to equation (14) in definition 3.1, i ¼ 1; � � � ; n. Then, the
distribution of losses on day mþ N for the changes in −ΔΠ in N days is
given by the following equiprobable loss space

pN
j ¼

Xn
i¼1

αi �
Xn
i¼1

αi

fNi;j;m
fi;m

; i ¼ 1; � � � ; n; j ¼ 1; � � � ;m (15)

where αi is the investment allocated to the i-th option. Thus, the monetary measure of the
portfolio historical VaRat N days and at a α confidence level is estimated as the αpercentile, Qα,

of fpN
j g

m

j¼1
, that is,

VaRα ¼ Qα

�n
pN
j

om

j¼1

�
(16)

Proof.Without loss of generality, assume thatN ¼ 1. The truth of equation (15) is established
by arguing according to the inductive method. Let PðkÞ be the given proposition for a
portfolio with koptions. The proposition is true for k ¼ 1. Indeed, the lossp1

j of the portfolio on

day mþ 1, given the j-th scenario, is calculated as −α1$return, where return ¼ f1;j
f1;j−1

− 1. So

p1
j ¼ α1 � α1

f1;j

f1;j−1
(17)

¼ α1 � α1

f1;m
�
f1;j
�
f1;j−1

�
f1;m

(18)

¼ α1 � α1

f11;j;m
f1;m

(19)

Now assume that PðkÞ is true. The conditional if PðkÞ then Pðkþ 1Þ is tautological since
Pðkþ 1Þ ¼ PðkÞ þ Pð1Þ. Finally, from the definition of the VaR measure and equation (1),

VaRα is the α percentile of fp1
j g

m

j¼1
. This ends the argument.
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Remark 3.1. (VaR-normal and VaR-t). Alternatively, it is possible to fit a parametric

distribution to the loss portfolio fpN
j g

m

j¼1
and thus obtain the corresponding

VaR risk measures. VaR-normal and VaR-t are obtained by fitting a
Gaussian distribution and a student-t with ν degrees of freedom distribution,
respectively.

Second, an adaptation to the historical simulation method is proposed to estimate ES in a
portfolio of n options consistently with FRTB specifications.

Proposition 3.2. (ES-historical for option portfolio). Starting from the same setting given in
definition 3.1 and proposition 3.1, the ESα metric is approximated by

ESα ≈

Pbmð1−αÞc
j¼1 pN

j

bmð1� αÞc (20)

Proof. The estimation is achieved by appealing to equation (7), making the losses fLj;mgmj¼1

equal to the losses fpN
j g

m

j¼1
established in equation (15) of proposition 3.1. In this way, whenm

becomes large, ESα is approximated by equation (20).

Remark 3.2. (ES-normal and ES-t). Alternatively, it is possible to fit a parametric

distribution to the loss portfolio fpN
j g

m

j¼1
and thus obtain the corresponding

ES risk measures. ES-normal and ES-t are obtained by fitting a Gaussian
distribution and a student-t with ν degrees of freedom distribution,
respectively.

Remark 3.3. (ES andVaR relationshipswith Basel FRTB).The above ES andVaRmetrics
(historical, normal and t versions) are made compatible with the FRTB
requirements when m ¼ 250, α ¼ 97:5%, the liquidity horizon in days is

taken from N ∈ f10; 20; 40; 60; 120g and the price scenarios fNi;j;m in equation

(14) of definition 3.1 are obtained frommþ N price observations in a stressed
market. This way of proceeding is similar to FRTB prescriptions under
IMA-ES.

Remark 3.4. (stress scenarios to consider in FRTB). The stress scenarios involved in
definition 3.1 can be achieved from the 2007–9 global financial crisis and the
2020–1 pandemic crisis. The resulting measures, VaR and ES; adapted to
FRTB, in addition to being related to portfolio risk capitals allow measuring
and analysing impacts of both crises, providing trading book information for
decision-making. In particular, because of the forthcoming market risk
management regulation, any position in financial derivatives, either for
hedging or investment purposes, should consider exposure levels through ES
metrics under FRTB environments.

4. Results
4.1 Illustration: risk capital by the sensitivities-based method in Basel FRTB
BCBS documents in BCBS (2019) two simple examples to estimate capital requirements
through the sensitivities-based method in the standardised approach, endeavouring to
promote a level of understanding for its industrial implementation. However, the examples
are remarkably brief and not very explicit in their calculations.
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Therefore, this illustration looks to widen the scope of the example applied to an option
position. To achieve this, the following procedure follows the steps of Algorithm 1 in Section
3.1, complements some estimations to be made in spreadsheets and explicitly indicates the
FRTB articles to be used. These additional characteristics thus serve as an auxiliary guide
towards studying and implementing the sensitivities-based method.

The banking portfolio in question consists of a short position put option on the
hypothetical Telco asset, which reports in Canadian currency (CAD). Table 1 shows the
essential data of the portfolio and reproduces Table A2.1 in BCBS (2019).

Consequently, Figures 1–3 estimate the delta, vega and curvature risk capital in
spreadsheets following the guidelines of Algorithm 1 under medium correlation scenarios.
The notation used in the previous Tables was introduced in Section 2.2.2.

The right column of each spreadsheet references the specific FRTB items that support the
calculations. When the calculations for delta and vega are repeated under low and high
correlation scenarios, generating similar spreadsheets, delta risk capital remains at CAD 0.21,
while vega capital increases to CAD 0.9567. As in BCBS (2019), it is assumed that the risk
capital for curvature given the correlation stress is kept at CAD 1.75. In the worksheet
represented in Figure 3, the calculations in the cells marked with # are ignored. However, the
corresponding magnitudes are calculated as usual in derivatives valuation. The risk capital
under the sensitivities-basedmethod turns out to be CAD2.9167. As a comparison, the results
shown coincide with those reported in BCBS (2019) for vega and curvature risks in medium
correlation scenarios. The remaining calculations shown in our study do not appear there.

To conclude, it is noted that total capital requirement is significantly greater than the
option’s value (by a factor of 7.6). Therefore, the bucket associated with the option is b6 (cell
B3 in Figure 1), which means that the underlying asset, affiliated with the
telecommunications sector, has a high capitalisation (≥ US$2tn, FRTB – MAR 21.74) and
comes from an advanced economy (countries indicated in FRTB – MAR 21.75). From the
above, it can be inferred that the risk capital of the option would be higher than that
previously calculated for assets linked to low capitalisations or belonging to an emerging
economy. Even though this illustration is hypothetical, it is based on an example with
identical data built in BCBS (2019). Therefore, the described situation approximates possible
impacts via SbM; in particular, the calculations show a high risk capital associated with SA.
The estimations also reflect an effort to build relationships with IMA ES, consistent with the
analysis proposed by Orgeldinger (2018) and Porretta and Agnese (2021). Also, the above
implications for emerging economies’ risk capital complement the studies ofMajumder and Li
(2018) and Valerio Roncagliolo and Villamonte Blas (2022).

The development of Algorithm 1 on a large scale would allow access to a platform to
measure market risk and its possible impacts on a portfolio via the SbM schema. Such
endeavour entails significant challenges regarding the instantiation of Algorithm 1. First,
starting from a given portfolio, linguistic routines must be written to identify factors, buckets
and risk classes. In addition, it is necessary to identify weighting factors and correlation
matrices, generate sensitivities calibration routines from market data and create expert
reports from text summaries. Finally, implementing each line within the algorithm loops
should be processed in separate modules.

Instrument Currency Maturity Industry Exercise type Market value (CAD)

put option @ Telco EUR 2 years Telecommunications European �0.38

Source(s): Own elaboration adapted from BCBS (2019), Table A2.1

Table 1.
Option portfolio in
Basel FRTB
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From a research point of view, analysing the algorithm’s scope from computer science
theories, like algorithm engineering, and evaluating its computational complexity using
parallel processors, are open inquiries (see, e.g. Kliemann and Sanders (2016)).

Source(s): Own elaboration

Source(s): Own elaboration

Figure 1.
Delta risk capital

requirement (CAD) –
Basel FRTB SA SbM

Figure 2.
Vega risk capital

requirement (CAD) –
Basel FRTB SA SbM

Market risk
impacts on

options under
FRTB



4.2 Application: ES and VaR metrics under FRTB for a currency option
Aportfolio composed of an at-the-money (ATM) European call option on GBP/USD having an
annual maturity T ∈ f0:5; 1g is considered. First, according to methodological section 3.2,
VaR and ES option risks are estimated through an adaptation of the historical simulation
method, consistent with the FRTB internal models approach. The estimations must be made
by building stress scenarios for the underlying asset. Two reference frameworks are chosen
for this: the 2007–9 global financial crisis and the 2020–1 COVID-19 pandemic crisis.

On the other hand, the estimated risk measures are compared with conventional VaR
metrics via option Greek letters. The results allow evaluating of possible risk impacts on a
GBP/USD call option and foreseeing which crisis scenario, 2007–9 or 2020–1, generates the
most significant impact on capital.

Finally, according to Section 2.3, back-testing tests are executed for the VaR risk metrics
conceived under FRTBversus traditional versions. The results suggest that themethodology
proposed in Section 3.2 is reasonable.

4.2.1 Market data and stress scenarios. In the following, dates are written in dd/mm/yyyy
format. The data used correspond to the GBP/USD exchange rate and the treasury curves for
the zero-coupon rate in the USA and the UK corresponding to the annual tenorsT ¼ 0:5 and
T ¼ 1. The data are obtained from Bloomberg in the date range 01/03/2000 to 06/03/2021.
The periods of stress referred to in the risk metrics are the following:

(1) Period i: 2007–9 financial crisis. Date range considered: 02/03/2009–01/18/2010.

(2) Period ii: 2020–1 covid-19 crisis. Date range considered: 02/10/2020–02/22/2021.

Source(s): Own elaboration

Figure 3.
Curvature risk capital
requirement (CAD) –
Basel FRTB SA SbM
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4.2.2 Information for the estimation of VaR and ES. Table 2 summarises the information
needed to measure the risk metrics in question. The valuation date t for VaR and ESmetrics
corresponds to any day between 02/22/2021 and 06/03/2021. In this case, two dates are
chosen. Stress scenarios are periods i and ii previously described.

The estimated VaR and ES risk metrics are as follows. First, conventional delta and delta-
gammaVaRmetrics are estimated as usual and independently of the stress scenarios. Second,
calculations of VaR and ES in normal and t-student versions and adapted to FRTB are
performed according to comments 3.1 and 3.2. Next, the adaptedVaR and ES are obtained via
historical simulation, as explained in Section 3.2, equations (16) and (20). Finally, the confidence
level α and the horizon N of the risk metrics are established. According to FRTB, the α level is
0.975, and N depends on the liquidity of the asset underlying the financial instrument.

4.2.3 Risk metrics, comparisons and impacts. To begin with, the following notation is
established:

VaR, conventional view: VaR delta and delta-gamma metrics: VaR δ and VaR δγ.

VaR FRTB: VaR normal, t-student and historical metrics: VaR N , VaR T ν, VaR H. ν
represents the degrees of freedom for the t-student distribution.

ES FRTB: ES normal, t-student and historical metrics: ES N , ES T ν, ES H.

Subsequently, with the information given in Table 2 and the methodology defined in Section
3.2, the agreed risk metrics are estimated in relative terms as shown in Table 3, where risk
metrics are computed traditionally for each date t via Greek letters and using 2007–9 and
2020–1 crisis stress scenarios via FRTB. The table also considers three possible horizons N
and two possible maturities T of the option.

For comparison purposes, the results in Table 3 can be represented in area diagrams
according to the pair ðt;NÞ. For example, the results corresponding to pairs ðt2; 1Þand ðt2; 10Þ
are illustrated in Figure 4.

The following approximate pattern is observed in Table 3.

Expiration T: VaR and ES risk metrics are higher for the call options with the lowest
maturity (T ¼ 0:5 years).

VaR, conventional view: VaR δ and VaR δγ are independent of the stress scenarios posed.

VaR FRTB: In both crisis periods, 2007–9 and 2020–1, VaRH≲VaRN ≈ VaR T 6. Read
the relation ≲ as “less than or approximate to”. Therefore, historical VaRwould lead to a
lower risk capital compared to the normal and t-student versions.

Risk metric valuation dates (t) 22/01/2021, 03/06/2021

Stress scenarios Period i 03/02/2009–18/01/2010
Period ii 10/02/2020–22/02/2021

Call on GBP/USD Pricing model Black Scholes
Underlying value Exchange rate at t
Annual maturity T ∈ f0:5; 1g
Strike Underlying value at t
Volatility GBP/USD Over 250 days prior to t
Local and foreign rates Zero curves in the USA and the UK

Risk metrics Conventional VaR Delta, delta-gamma
VaR and ES under FRTB Normal, t-student, historical

Confidence level and risk horizon α ¼ 0:975; N ¼ 1; 10 and 20 days

Source(s): Own elaboration

Table 2.
VaR and ES metric

input data under FRTB

Market risk
impacts on

options under
FRTB



VaR: Regarding the 2020–1 crisis, conventional VaR measures are ≲ the historical VaR
measure. Thus, the risk capital generated by VaR H via FRTB is approximate to or
greater than the corresponding one using the conventional counterparts, VaR δ and δγ.

Crisis stress scenarios – FRTB: The 2020–1 crisis has a more significant impact on the
historicalVaR andESmeasures, while the 2007–9 crisis has it on the normal and t-student
measures ofVaR andES. The calculations related toES show an alternative view to those
developed by Men�endez and Hassani (2021). While the former considers stress scenarios
under financial crises in the loss portfolio, the latter is based on synthetic data
augmentation methodologies. Back-testing in FRTB can help analyse ES performance
and therefore validate whether the alternatives respond satisfactorily to the regulation.

VaR and ES – FRTB: In each crisis period, ES measures are > than the respective VaR
measures. In the 2007–9 crisis, ES increases compared to VaR are 22% in the normal
model, 38% in the t-student model and 15% in the historical model. Regarding the 2020–1
crisis, these figures correspond to 21%, 36% and 21%, respectively.

Horizon N: At a higher horizon N, only VaR H and ES H metrics are limited by the
restriction that the potential loss cannot exceed 100% of the portfolio value. Additionally,

t1: 22/01/2021
N ¼ 1 day N ¼ 10 days N ¼ 20 days

T ¼ 0:5 T ¼ 1 T ¼ 0:5 T ¼ 1 T ¼ 0:5 T ¼ 1

Greeks VaR δ �0.2249 �0.1601 �0.7112 �0.5064 �1.0058 �0.7161
VaR δγ �0.2101 �0.1528 �0.6375 �0.4700 �0.8785 �0.6533

Crisis 2007–9 VaRN �0.2421 �0.1726 �0.7475 �0.5144 �1.1062 �0.7467
VaR T 6 �0.2470 �0.1760 �0.7640 �0.5257 �1.1308 �0.7633
VaRH �0.2621 �0.1911 �0.4821 �0.3546 �0.6432 �0.4812
ES N �0.2908 �0.2072 �0.9113 �0.6271 �1.3515 �0.9126
ES T 6 �0.3321 �0.2367 �1.0503 �0.7228 �1.5597 �1.0534
ES H �0.3032 �0.2225 �0.5837 �0.4414 �0.7055 �0.5423

Crisis 2020–1 VaRN �0.2174 �0.1554 �0.6560 �0.4795 �0.8455 �0.6068
VaR T 6 �0.2216 �0.1584 �0.6696 �0.4894 �0.8630 �0.6193
VaRH �0.2149 �0.1556 �0.6977 �0.5454 �0.8296 �0.6696
ES N �0.2601 �0.1859 �0.7908 �0.5776 �1.0196 �0.7318
ES T 6 �0.2964 �0.2118 �0.9053 �0.6608 �1.1673 �0.8379
ES H �0.3133 �0.2313 �0.9037 �0.7826 �0.9241 �0.7978

t2: 03/06/2021
Greeks VaR δ �0.2238 �0.1594 �0.7077 �0.5041 �1.0009 �0.7129

VaR δγ �0.2088 �0.1519 �0.6332 �0.4669 �0.8722 �0.6487
Crisis 2007–9 VaRN �0.3344 �0.2392 �1.0525 �0.7239 �1.5624 �1.0574

VaR T 6 �0.3413 �0.2441 �1.0765 �0.7403 �1.5988 �1.0818
VaRH �0.3508 �0.2592 �0.6086 �0.4621 �0.7731 �0.6072
ES N �0.4026 �0.2877 �1.2912 �0.8868 �1.9245 �1.3006
ES T 6 �0.4605 �0.3289 �1.4939 �1.0251 �2.2320 �1.5071
ES H �0.4027 �0.3003 �0.7172 �0.5649 �0.8282 �0.6725

Crisis 2020–1 VaRN �0.2989 �0.2146 �0.8730 �0.6354 �1.1183 �0.8050
VaR T 6 �0.3049 �0.2189 �0.8918 �0.6489 �1.1429 �0.8224
VaRH �0.2898 �0.2122 �0.8271 �0.6809 �0.9300 �0.8036
ES N �0.3585 �0.2572 �1.0606 �0.7700 �1.3632 �0.9788
ES T 6 �0.4091 �0.2933 �1.2199 �0.8842 �1.5710 �1.1264
ES H �0.4126 �0.3103 �0.9686 �0.8948 �0.9800 �0.9080

Note(s): Call option on GBP/USD
Source(s): Own elaboration

Table 3.
VaR and ES at N days
under FRTB and
traditional VaR
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the data suggest it is inaccurate to use the factor
ffiffiffiffi
N

p
to estimate the risk at N days from

the risk at one day. This last fact is aligned with the analysis and evidence found in
Dan�ıelsson and Zigrand (2006) and Pederzoli and Torricelli (2021).

(a)

(b)

Source(s): Own elaboration

Figure 4.
VaR and ES under

FRTB for a call option
on GBP/USD (see

Table 3)
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4.2.4 Back-testing. Figure 5 shows call option returns vs VaR and ESmeasures under FRTB
and VaR under the Greek delta, where the dynamic behaviour of the risk measures can be
observed. To evaluate the performance of VaR metrics, Table 4 reports eight back-testing
tests given by TL, Bin, UC, TUF, CC, CCI, TBF and TBFI, described in Section 2.3. VaR
metrics via Greek letters areVaR δ andVaR δγ, and those via FRTB areVaRN ,VaR T 6 and
VaRH. Computationally, all the risk metrics are estimated through a script in Matlab.

In the first column of Table 4, there are two valuation dates denoted by t ¼ t1 and t ¼ t2 for
which the tests are to be carried out (dates are the same as in Table 3). These tests are
executed over two successive periods of 250 days before t. The second column identifies the
names of the VaR measures considered. The number 975 or 99 is added to the respective
names, depending on the risk metric’s confidence level, 97.5% or 99%. Finally, the flag
symbols in the remaining columns indicate the test result. The green colour means that the
test is accepted, that is, the respective null hypothesis of the test is not rejected at a
significance level of 5%. Meanwhile, red indicates that the test is rejected, and yellow
indicates the warning zone established in the TL test.

The overall performance of all risk measures under back-testing is good. However, we
believe that comparatively the performance of the historical VaR metric under FRTB is
preferable. First, VaRH975 and VaRH99 are shown to be satisfactory measurements under
frequency and independence tests, while VaRH99 turns out to be reasonable under mixed
proofs. Second, the metric in question passes a higher number of back-testing procedures,
which is reflected in a higher number of assigned green flags.

In sum, the previous observations and the results reported in Section 4.2.3 suggest that
historical ES and VaR metrics under FRTB are reasonable for risk management of the call
option considered under the internal models’ approach. The metrics in question were defined
in equations (16) and (20) of Section 3.2.

Note(s): Confidence level 0.975
Source(s): Own elaboration

Figure 5.
VaR and ES
under FRTB
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Note(s): Call option on GBP/USD
Source(s): Own elaboration

Table 4.
Back-testing on

different VaR metrics:
FRTB and

conventional
frameworks
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Severity validation tests for VaR metrics, as in Colletaz et al. (2013), and back-testing
procedures for ES, as in Kratz et al. (2018) and Deng and Qiu (2021), are part of current
research agendas. Finally, extending our analysis towards emerging economies, as in Serrano
Bautista and N�u~nez Mora (2021), is a future agenda.

5. Discussion
This work develops two proposals for market risk estimations and their associated impacts
under FRTB regulation, which comes into effect in 2023. First, it proposes an algorithm to
estimate risk capital via the SA-SbM framework. An illustration of a hypothetical position in
options shows a possible implementation of the algorithm in spreadsheets to evaluate
impacts, yielding that the risk capital to position value ratio for an advanced economy is 7.6.
Second, we design a methodology to assess ES in options portfolios via IMA. An application
is then developed to investigate the impact of ES and VaR under FRTB versus conventional
VaR on GBP/USD call options, considering the 2007–9 and 2020–1 crises for building stress
scenarios. It is found that historical VaR leads to lower risk capital and performs better by
back-testing procedures than the normal and t-student versions. Also, the 2020–1 crisis had a
significant impact on historical VaR and ES, while the 2007–9 crisis on the normal and t-
studentVaRandES counterparts. In turn, historicalVaRandES are bounded by 100%of the
portfolio value. Furthermore, the data suggest that extrapolating the risk to N days by

magnifying the risk to 1 day by the factor √N is inaccurate.
The above illustration of the algorithm suggests that, for emerging economies, the risk

capital to position value ratio would be more drastic than previously indicated. Financial
institutions must join efforts or restructure their portfolios to meet SA SBM requirements. On
the other hand, the proposed methodology for evaluating ES risk via IMA has shown
reliability to be incorporated in a risk management programme or even be considered as a
technical document annexe in FRTB.

Implementing the two proposals can become a technological tool for the banking industry
or an experimentation platform to explore possible marginal impacts concerning SbM or ES
under FRTB. Regarding IMA-NMRF, a whole field of exploration of new uncertainty-based
theories opens since the subjective aspect of this component has not been dealt with in
previous Basel regulations. Further research should evaluate the impacts of the new
regulation on more complex portfolios than those examined in this study. Finally,
computational complexity issuesmust be considered for the implementation of the algorithm.

6. Conclusions
With the new Basel FRTB regulation for market risk in 2023, banking institutions must
prepare for future impacts and complex challenges in knowledge management, technological
and human resources implementation, ethical and accounting frameworks, portfolio
restructuring and institutional capital. The two proposals presented in this work draw
communication bridges between the sensitivities-basedmethod in the standardised approach
(SA-SbM) and the expected shortfall in the internal models approach (IMA-ES).

The proposals aim to provide methodologies whose implementations assist in measuring
market risk and the associated impacts on risk capital. The bridges seek to analyse the
impacts of risk capital in different economies and make the associated risk capitals more
convergent and comparable. All the above will support decision-making processes
concerning risk-based capital requirements and strengthen institutional risk management
processes.

Our research shows that under the SA-SbM schema and from a stylised option portfolio,
the risk capital to position value ratio is higher than 7 andwould impact emerging economies.

JEFAS



Also, under the IMA-ES framework and from a currency options portfolio, we present
evidence that themethodology defined formeasuringmarket risk is satisfactory, considering
FRTB requirements and a statistical point of view.

The technical and managerial complexity levels involved in the Basel FRTB regulation
are today a focus of attention for institutions and academics. This work focuses on the FRTB-
SA-SbM and FRTB-IMA-ES components of the FRTB regulation for market risk in options.
The effects of SA-DRC, SA-RRAO, IMA-NMRF and IMA-DRC components remain to be
measured.
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