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ABSTRACT 
 

This study aimed at measuring beef marbling scores in an objective and simple manner through spectral imaging 
and multiple linear regression (MLR). Beef marbling prediction by hyperspectral imaging and partial least 
squares regression (PLSR) was analyzed to calibrate and evaluate an MLR model with a few selected 
wavelengths. Data came from 44 beef samples and consisted of their spectral signatures (75 wavelengths) from 
hyperspectral reflectance images (400-1000 nm) and their marbling scores assigned by evaluators. The 
wavelengths that presented regression coefficients with the highest absolute values in the PLSR model, were 
used to calibrate the MLR model by a backward stepwise approach (p < 0.05). The coefficient of determination 
for prediction (R2p) and the standard error of prediction (SEP) were evaluated. The MLR model was suitable for 
practical use because it required only 12 wavelengths for reliable predictions (R2p = 0.824 > 0.8; SEP = 11.4% < 
15%). A model is proposed for the objective and simple measurement of beef marbling score using multispectral 
imaging technology. 
 

Keywords: hyperspectral imaging; partial least squares regression; predictive model; meat quality; 
multispectral imaging; multiple linear regression. 
 
 

RESUMEN 
 

Este estudio tuvo como objetivo medir el puntaje de marmoleado de carne de vacuno de una manera objetiva y 
sencilla mediante imágenes espectrales y regresión lineal múltiple (RLM). La predicción del marmoleado de la 
carne usando imágenes hiperespectrales y regresión de mínimos cuadrados parciales (RMCP), fue analizada 
para para calibrar y evaluar un modelo RLM con algunas longitudes de onda seleccionadas. Los datos 
provinieron de 44 muestras de carne de vacuno y consistieron en sus firmas espectrales (75 longitudes de onda) 
de imágenes de reflectancia hiperespectral (400-1000 nm) y las puntuaciones de marmoleado asignadas por los 
evaluadores. Las longitudes de onda que presentaron coeficientes de regresión con valores absolutos más altos 
en el modelo RMCP se utilizaron para calibrar el modelo RLM mediante un enfoque por pasos hacia atrás (p < 
0,05). Se evaluaron el coeficiente de determinación de predicción (R2p) y el error estándar de predicción (ESP). 
El modelo RLM era adecuado para uso práctico porque requería sólo 12 longitudes de onda para predicciones 
confiables (R2p = 0,824 > 0,8; ESP = 11,4% < 15%). Se propone un modelo para la medición objetiva y sencilla 
del puntaje de marmoleado de carne de vacuno mediante tecnología de imágenes multiespectrales.  
 

Palabras clave: imágenes hiperespectrales; regresión parcial de mínimos cuadrados; modelo predictivo; 
calidad de la carne; imágenes multiespectrales; regresión lineal múltiple. 
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INTRODUCTION 

 
Beef is one of the most consumed foods of animal 
origin. It is a source of high-biological value 
proteins and minerals, such as iron and zinc, 
vitamin A and B-complex vitamins (Liu et al., 2022; 
Vidal et al., 2022; Pereira & Vicente, 2013). 
Nowadays, beef production seeks to satisfy the 
demanding quality requirements of consumers. 
One of the quality attributes of interest to 
consumers is marbling, which consists of the 
amount and spatial distribution of intramuscular 
fat in the longissimus dorsi muscle (Gagaoua et al., 
2022; Khaled et al., 2021). The consumers perceive 
this attribute as white specks or streaks in the lean 
muscle. Highly marbled steaks and other cuts of 
beef provide higher palatability (i.e., better sensory 
quality), which results in a higher marbling score 
(Khaled et al., 2021; Cheng et al., 2015).  
Beef producers estimate or measure marbling as a 
reference to establish the commercial value of their 
product. The beef marbling is commonly measured 
manually using meat graders, which can be affected 
by the fatigue and natural subjectivity of the 
evaluator. In this context, several efforts have 
focused on developing marbling measurement 
methods using modern technologies, such as 
infrared spectroscopy, Raman spectroscopy, color 
computational imaging, and multi/hyperspectral 
imaging (Pinto et al., 2023; Echegaray et al., 2022; 
Cheng et al., 2015). Among them, multi/ 
hyperspectral imaging stands out since it combines 
digital imaging and spectroscopy, providing spatial 
and chemical spectral information about the 
samples (Jia et al., 2022; Özdoğan et al., 2021; Siche 
et al., 2016). 

The high potential of multi/hyperspectral imaging 
to measure marbling and other quality attributes in 
the beef industry 4.0, is due to the application of 
data science strategies that handle the collinear 
and high-dimensional data to propose solutions 
with only the necessary data (Nychas et al., 2021; 
Echegaray et al., 2022). For measuring the beef 
marbling using multi/hyperspectral imaging, one 
strategy was to binarize sample images with a 
decision tree to determine fat area and 
subsequently apply a quadratic regression model 
to calculate beef marbling scores (Velásquez et al., 
2017). Another strategy was to binarize images 
based on the maximum (fat/lean) ratio of gray 
value to determine the area of large, medium, and 
small fat particles and subsequently calculate meat 
marbling scores using a multiple linear regression 
(MLR) model (Li et al., 2011). In our previous study 
(Aredo et al., 2017), a partial least squares 
regression (PLSR) model was proposed to calculate 
beef marbling from the spectral signatures of the 
samples; considering procedural aspects, it can be 
affirmed that this model used a simple approach. 
The solution to predictive tasks based on a 
calibrated PLSR model with full spectra can be 
simplified by calibrating an MLR model with 
selected spectral data (ElMasry et al., 2007). MLR 
models stand out for being easy to calibrate and 
understand for end users, which facilitates their 
practical application in industry through multi-
spectral imaging technology (Su & Sun, 2018). In 
this sense, the present study explored measuring 
beef marbling scores by spectral imaging and MLR 
with a few selected wavelengths. 

 
 

METHODOLOGY 

 
Data acquisition 
This work used data from Aredo et al. (2017), 
where beef marbling score was predicted using 
hyperspectral imaging. Procedures and equipment 
for data acquisition and treatment, are briefly 
described here. A total of 58 beef samples 
(longissimus dorsi muscle) from Chachapoyas 
(Amazonas, Peru) were collected. These samples 
were divided into two sets: (1) a set of 44 samples 
for model calibration and (2) a set of 14 samples for 
prediction using the model. 
The samples were scanned in a hyperspectral 
imaging system with a broom approach in 
reflectance mode. The hyperspectral imaging 
camera was a Pica XC model (Resonon Inc., USA), 
and the image acquisition/processing software 
was SpectrononPRO (Resonon Inc., USA). The 
system captured hyperspectral images in a spectral 
range of 400-1000 nm with a spectral resolution of 
8 nm (i.e., 75 wavelengths were explored). The 
spectral signatures consisted of the average 
spectra in the region of interest from the 
hyperspectral images of each sample. 
The reference measurement of the marbling score 
of the samples was made through the visual 
appraisal of 15 evaluators. It consisted of assigning 
scores by comparing photographs of the samples 

with the beef marbling standard of the Japan Meat 
Grading Association (JMGA, 2000), which ranges 
from 1 (minimum marbling) to 12 (maximum 
marbling). 
 
Regression 
The marbling scores of the samples assigned by 
evaluators were the dependent variable, while the 
spectral signature (75 wavelengths) of the samples 
was the dependent variable. 
The calibration of the PLSR model by Aredo et al. 
(2017) for the prediction of beef marbling score 
using hyperspectral imaging was reviewed. PLSR is 
a machine learning technique introduced by Geladi 
& Kowalski (1986) used in chemometric tasks 
(Wold et al., 2001). It explains the descriptors by 
means of orthogonal factors, also called latent 
variables. The optimal number of latent variables is 
identified with the minimum mean squared 
prediction error value. Subsequently, the 
regression coefficients for the optimal number of 
latent variables are obtained.  
Regression coefficients of PLSR models calibrated 
with near-ideal numbers of latent variables were 
also generated. This step was carried out with the 
intention of facilitating the identification of the 
wavelengths that carry important information for 
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the prediction through the criterion of the highest 
local values of the regression coefficients. 
 

The spectral signature of the samples was reduced 
considering the selected wavelengths. Using the 
reduced spectral signature and the marbling value 
assigned by the sample evaluators, a model was 
calibrated using multiple linear regression (MLR). 
This regression method is the most used when 
there is a linear relationship between the variables 
and is based on the principle of minimizing the 
prediction error (Çetin et al., 2022). In this work, 
this regression was used with the aim of a potential 
practical implementation of the simplified model 
through multispectral imaging technologies (Xie et 

al., 2018) and to facilitate intuitive recalibration for 
users with little mathematical / statistical / 
computational knowledge. For comparative 
purposes, a reduced PLSR model was calibrated 
with the same data used for the MLR model. 
Calibration of the PLSR model was performed using 
Matlab 2023a software (MathWorks, Natick, MA, 
USA), while calibration of the MLR model was 
performed using MS Excel software (Microsoft 
INC). Both PLSR and MLR models, being linear 
models, can be represented by eq. (1) or by eq. (2) 
in detail. 
𝑌(1.𝑛) = 𝛽(1.𝑘). 𝑋(𝑘.𝑛) + 𝑒(1.𝑛)            (1) 

 

 (2) 
 
In the case of the PLSR model, n: is the number of 
samples (44), k: is the number of wavelengths in 
the spectral signature (75), Y: is the response 
matrix (1 x 44) of marbling score values, β: is the 
matrix of regression coefficients (1 x 75), X: is the 
matrix of predictive variables constituted by the 
spectral signatures of the samples (75 x 44) and e: 
is the matrix of residual information not explained 
by the model (1 x 44). 
In the case of the MLR and reduced PLSR models, n: 
is the number of samples (44), k: is the number of 
selected wavelengths identified from the analysis 
of the regression coefficients of the PLSR model, Y: 
is the response matrix (1 x 44) of marbling scores 
values, β: is the matrix of regression coefficients (1 
x k), X: is the matrix of predictive variables 
constituted by the reduced spectral signatures 
(selected wavelengths) of the samples (k x 44) and 
e: is the matrix of unexplained residual information 
by template (1x44). 

The performance of the models was evaluated in 
the calibration set using the coefficient of 
determination of calibration (R2c) and standard 
error of calibration (SEC), and in the prediction set 
using the coefficient of determination of prediction 
(R2p) and standard error of prediction (SEP) 
(ElMasry et al. 2007). The SEC and SEP are 
represented in eqs. (3-5). 

𝑆𝐸𝐶 =  √
1

𝑛𝑐−1
∑ (�̂� − 𝑌)

2𝑛𝑐

𝑖=1              (3) 

𝑆𝐸𝑃 =  √
1

𝑛𝑝−1
∑ (�̂� − 𝑌 − 𝑏𝑖𝑎𝑠)

2𝑛𝑝

𝑖=1
            (4) 

𝑏𝑖𝑎𝑠 =
1

𝑛𝑝
∑ (�̂� − 𝑌)

𝑛𝑝

𝑖=1
                                                 (5) 

where, Ŷ: is the predicted marbling score values; Y: 
the measured marbling score values; nc: the 
number of samples (spectral signatures) in the 
calibration set (44); and np: number of samples 
(spectral signatures) in the prediction set (14) and 
the “bias”: is the systematic error. 
The figure 1 outlines the mentioned steps. 

 

 
Figure 1. Main steps for measurement of beef marbling score by spectral imaging. 

 
The steps of this study are the basic ones for the 
predictive tasks followed in the literature. There 
are studies where some complementary analyses 
are carried out for a better understanding or 
handling of the data. 
 

2.3 Complementary analyses 
A principal component analysis was performed on 
the spectral data from the calibration set. This 
technique reduces the dimension of the data and 
extracts the variance of the data by projecting it 
into principal components (Bro & Smilde, 2014). 
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This study focused on interpretating scores and 
loadings on the principal components to get 
insights about the samples and wavelengths, 
respectively (Khan et al., 2020). The scores plot 
was used to observe the beef marbling scores of the 
samples according to the spectral data. The 
loadings plot was used to identify the selected 
wavelengths based on the spectral data.  

The coefficient of correlation between each 
wavelength and beef marbling scores was 
determined. It was carried out to identify the 
wavelengths that can potentially be used to predict 
the quality attribute of interest (Dong et al., 2016). 

These analyses were performed using Matlab 

2023a software (MathWorks, Natick, MA, USA). 

 
RESULTS AND DISCUSSION 

Full model verification 
Verification of the calibration of the PLSR model by 
cross-validation (Figure 2) revealed that the ideal 
number of latent variables was 15, and that a 
similar number of latent variables (13, 14 and 16) 
can produce models with a low error level. 
 

 
 

Figure 2. Mean Squared Prediction Error (MSPE) and 
Explained Variance (EV) in Partial Least Squares Regression 
(PLSR) models with different number of latent variables. 

 
The analysis of regression coefficients of the PLSR 
model is commonly performed in the one 
calibrated with the optimal number of latent 
variables (15). However, as the PLSR models 
calibrated with 13, 14 and 16 latent variables 
present a low error, it was considered interesting 
to analyze the coefficients of these PLSR models 
together (Figure 3). 
The remarkable overlapping of the regression 
coefficients provides evidence that the 
wavelengths that carry essential information for 
predicting marbling are similar to each other over 
the range of interest of the latent variables. 
Therefore, wavelengths with regression 
coefficients with higher absolute values should be 
useful for calibrating simplified models.  

 
 

Figure 3. Coefficients of Partial Least Squares Regression 
(PLSR) models calibrated with 13-16 latent variables. 

 
MLR calibration 
The calibration of the MLR model (Table 1) using a 
stepwise procedure with a backward elimination 
approach revealed that the selected wavelengths 
that had the highest absolute values in the PLSR 
regression coefficient were significant (p < 0.003). 
The MLR model was statistically valid (p = 0.00) for 
predicting beef marbling (Table 1), and it has a 
predictive performance lower than the full PLSR 
model (Table 2), which is expected when less 
spectral information is used (from 75 to 12 
wavelengths). On the other hand, the calibration of 
a PLSR model with the same reduced data and 12 
latent variables yielded similar results to the MLR 
model (Table 2). Considering the simplicity, the 
MLR model is suitable for practical application 
because it achieves acceptable predictive 
performance (R2p > 0.8, SEP < 15%) with reduced 
data (Siche et al., 2016; Su & Sun, 2018). In addition, 
the visual verification of the performance of the 
MLR model (Figure 4) indicates that it is adequate 
because both the calibration and prediction set 
points are close to the ideal line. 

 
Table 1 
Regression coefficients of the multiple linear regression model 
 

Wavelength (nm) Coefficients Error t-statistical Significance 

Interception -3.898 1.711 -2.28 0.030 
408 0.788 0.226 3.49 0.001 
560 4.833 1.393 3.47 0.002 
592 -9.330 1.710 -5.46 0.000 
640 13.514 2.739 4.93 0.000 
664 -12.589 2.428 -5.19 0.000 
744 7.691 1.524 5.05 0.000 
808 -6.475 1.166 -5.55 0.000 
904 16.752 3.855 4.35 0.000 
920 -14.094 4.143 -3.40 0.002 
952 15.374 3.426 4.49 0.000 
968 -22.576 3.508 -6.43 0.000 
992 6.388 1.856 3.44 0.002 

 

Analysis of variance: FCal=21.56 > FTab = 2.08, p = 0.00.  
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Table 2 
Performance of models in predicting beef marbling score 
 

Type of model Number of wavelenghts 
Calibration  Prediction 

R2
c SEC  R2

p SEP SEP (%) 
Full PLSR* 75 0.962 0.2  0.908 0.3 6.6 
MLR 12 0.893 0.4  0.824 0.5 11.4 
Simplified PLSR 12 0.891 0.4  0.819 0.5 11.6 

PLSR: Partial Least Squares Regression, MLR: Multiple Linear Regression, R2
c: coefficient of determination for calibration, SEC: 

standard error of calibration, R2
p: coefficient of determination of prediction, SEP: standard error of prediction. 

* Aredo et al (2017).  
 
 

A point to highlight is the limitation of the model, as 
it is calibrated with samples with marbling scores 
between 1.2 and 5.3 (Figure 4); it cannot be used 
for reliable predictions in samples with marbling 
greater than 5.3. However, this does not rule out 
the possibility that the selected wavelengths (Table 
1) are used as a reference in the recalibration of 
MLR models for multispectral systems with beef 
samples with different marbling without the need 
for extensive statistical knowledge of the user. 
 

 
 

Figure 4. Actual vs. predicted beef marbling score using 
the reduced multiple linear regression model. 

 
Regarding the selected wavelengths for beef 
marbling score measurement, it is worth 
mentioning that some of them are similar to those 
used in the evaluation of the composition of beef by 
near-infrared spectroscopy. It is well known that 
the visible region of the spectrum (400-700 nm) is 
related to the pigments in the samples. In this 
sense, pigments, such as oxymyoglobin and 
myoglobin, usually have strong absorption in this 
region (Alomar et al., 2003). Some reported 
wavelengths are the 430 nm wavelength called the 
Soret absorption band in the blue region of the 
spectrum due to the heme protein, which is 
attributed to trace amounts of hemoglobin in meat; 
and the 574 nm wavelength that is related to 
oxyhemoglobin absorption (Cozzolino & Murray, 
2002). In near-infrared region, the wavelengths of 
908 and 928 nm are attributed to proteins and fats, 
respectively (Alomar et al., 2003). Furthermore, 
the 970 nm wavelength is related to the second O-
H stretching overtone due to the presence of water 
in the sample (Cozzolino & Murray, 2002; Alomar 
et al., 2003). 
 

Complementary analyses 
Principal component analysis revealed that 
99.31% of the variance of the spectral data was 

captured with the first and second principal 
components (Figure 5 and Figure 6). In the score 
plot (Figure 5), it is not possible to differentiate 
samples with different beef marbling scores. It 
indicates that the high variance captured from the 
spectral data by the principal components does not 
necessarily imply class differentiation due to the 
unsupervised nature of the technique (Munera et 
al., 2018). 
 
 

 
Figure 5. Scores plot (principal component 1 vs principal 
component 2) of spectral data of samples with different 
beef marbling scores. 
 
 

The loadings plot (Figure 6) revealed that the 
loadings of the wavelengths are positive in the first 
principal component, while part of the loadings are 
negative in the second principal component. The 
loadings appear to form a continuous “curve” with 
peaks, troughs, and inflection points. These 
elements could be used as a reference to suggest 
the selected wavelengths to predict the quality 
attribute of interest. However, in this case, with 
only this result, it is difficult to choose these 
wavelengths precisely. 
The loadings plot including the wavelengths 
selected by multiple linear regression analysis 
(Figure 6), confirms that most of the selected 
wavelengths are in positions that define the 
“curve”. An interesting fact is that the selected 
wavelengths are “balanced” concerning the 
principal component 2; that is, six of them have 
positive values, and the other six have negative 
values. Moreover, the selected wavelengths have 
relatively high values in principal component 1, 
except for the 408 nm wavelength. This suggests 
that the selected wavelengths for predicting quality 
attributes can be confirmed with the loadings plot 
of principal component analysis. 
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Figure 6. Loadings plot (principal component 1 vs 
principal component 2) of spectral data of beef samples 
with different marbling scores*. 
* Black points are the loadings of wavelengths used in 
multiple linear regression model.   

 

The evaluation of the correlation coefficient of each 
wavelength with actual beef marbling scores 
(Figure 7), revealed that all the wavelengths were 
weakly correlated with beef marbling scores. In 
this sense, this result cannot support the selection 
of wavelengths to calibrate simplified linear 
models (Aredo et al., 2019). 
 

Figure 7. Correlation coefficients (r) between each 
spectral wavelength with actual beef marbling scores. 

 

CONCLUSIONS 
 
This study demonstrated that is possible to 
measure beef marbling using spectral imaging and 
MLR with acceptable predictive performance (R2p = 
0.824 > 0.8, SEP = 11.4% < 15%). The MLR used 
only 12 wavelengths, which is suitable for practical 
application by multispectral imaging technology. 
This model is simpler and easy to understand; 

hence, it has the potential to help beef producers 
with a low understanding of data science to obtain 
information on the quality of their product for 
decision-making regarding market pricing. The 
model features also facilitate recalibration tasks in 
other realities. 
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