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Resumen
La producción de enzimas lignocelulolíticas por hongos filamentosos tiene un gran 
potencial a nivel industrial debido a sus diversas aplicaciones. Los cultivos fúngicos 
mixtos y particularmente las biopelículas fúngicas mixtas constituyen un sistema 
de fermentación prometedor para una mayor producción enzimática. Sin embargo, 
no se ha abordado cuánto de esta mejora depende de la proporción de biomasa 
mixta. En este sentido, el objetivo de este estudio fue desarrollar un método para 
cuantificar de forma específica y precisa la biomasa fúngica mixta. Para este propó-
sito, se recolectaron cultivos mixtos de biopelículas de 48 a 120 h de crecimiento 
compuestos por Aspergillus niger y Trichoderma reesei, dos hongos filamentosos 
utilizados industrialmente para la producción de celulasas; el micelio se pulverizó y 
el ADN se extrajo para ensayos de qPCR con cebadores específicos para cada hongo. 
Los cebadores se diseñaron a partir de regiones no conservadas de las secuencias 
de los genes de actina y β-tubulina de A. niger y T. reesei. La especificidad de estos 
cebadores se probó in silico y experimentalmente. Se obtuvo una correlación es-
tadísticamente significativa entre la biomasa calculada mediante qPCR y los datos 
de biomasa en peso seco. Mediante este método, fue posible detectar cambios en 
las proporciones de los micelios en las biopelículas a lo largo del tiempo, lo que 
sugiere una interacción competitiva entre estos dos hongos. En conclusión, este 
método permite una cuantificación específica y precisa de la biomasa fúngica mixta 
y también podría aplicarse a diferentes sistemas de cultivo mixto para estudiar 
interacciones microbianas.

Abstract
Production of lignocellulolytic enzymes by filamentous fungi have a great potential 
at industrial level due to their widespread applications. Mixed fungal cultures and 
particularly mixed fungal biofilms constitute a promising fermentation system for 
an enhanced enzyme production. However, it has not been addressed how much 
of this enhancement depends on the mixed biomass proportion. In this sense, the 
aim of this study was to develop a method to specifically and accurately quantify 
mixed fungal biomass. For this purpose, mixed biofilm cultures composed of 
Aspergillus niger and Trichoderma reesei, two filamentous fungi used industrially 
for cellulase production, were collected from 48 to 120 h of growth; mycelia were 
pulverized, and DNA was extracted for qPCR assays with specific primers for each 
fungus. Primers were designed from non-conserved regions of sequences of actin 
and β-tubulin genes of both A. niger and T. reesei. Specificity of these primers was 
tested in silico and experimentally. A statistically significant correlation was obtained 
between qPCR-calculated biomass and dry weight biomass data. By this method, it 
was possible to detect changes on mycelia proportions in biofilms over time, sugges-
ting a competitive interaction between these two fungi. In conclusion, this method 
allows a specific and accurate quantification of mixed fungal biomass and could be 
also applied to different mixed culture systems for studying microbial interactions.
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Introduction
Industrial enzyme production has a wide applica-

tion in biotechnology, because of the high market value 
of this proteins and the potential use of renewable and 
low-cost raw materials, such as cellulose and lignocellu-
lose (Kirk et al. 2002, Kuhad et al. 2011, Guerriero et al. 
2015). Lignocellulose is the major component of plant 
biomass, comprising around half of the matter produ-
ced by photosynthesis and representing the most abun-
dant renewable organic resource in soil (Sánchez 2009).   
However, obtaining sugars from lignocellulosic biomass 
for fermentation is still an expensive process, mostly due 
to low enzyme yields of producing microorganisms (Gal-
be & Zacchi 2002) and chemical complexity and variabi-
lity of this substrate (Karimi & Taherzadeh 2016). Thus, 
optimal use of lignocellulose depends on the selection 
of microorganisms that exhibit a high lignocellulase en-
zymatic yield, as well as culture systems that guarantee 
and promote this production.

Previous studies have demonstrated that growth in a 
mixed biofilm system formed by filamentous fungi Asper-
gillus niger and Trichoderma reesei, leads to a total cellula-
se yield increase of 50-70% with respect to single biofilm 
cultures (Villena 2002, Gutiérrez-Correa & Villena 2012). 
Although mixed cultures constitute a promising fermen-
tation system, it has not been yet addressed how much 
of this enzymatic synergy depends on a certain propor-
tion of fungal mixed biomass and what are the effects of 
growth rate and culture time on this proportion. In order 
to assess the influence of fungi proportion on the mixed 
biofilm system productivity, it is essential to develop a 
method to accurately determine biomass of each species 
in mixed cultures. 

When direct quantification of biomass is not possi-
ble (e. g., sample scarcity, irreversible biomass-substrate 
binding), an indirect approach might be a more feasible 
manner to collect biomass data. Several methods for in-
direct biomass quantification have been developed, na-
mely, microscopic techniques such as spore counting or 
hyphal thickness and length measurement (Schnürer 
1993, Balser et al. 2005); cell membrane and wall com-
ponents quantification like ergosterol (Gessner et al. 
1991, Nylund & Wallander 1992, Lau et al. 2006), phos-
pholipid fatty acids (Olsson et al. 1995) and glucosamine 
(Matcham et al. 1985); and additionally inner-cell compo-
nents such as total protein (Abd-Aziz et al. 2008) and DNA 
(Zhao et al. 2013, Liu et al. 2017). Methods based on DNA 
quantification receive increasing attention for their ability 
not only to estimate microbial biomass content but also to 
provide species composition data (Baldrian et al. 2013). In 
this sense, the aim of this work was to develop a method 
that allows an accurate quantification of A. niger ATCC 
10864 and T. reesei QM6a biomass in a mixed biofilm sys-
tem by means of the specific quantification of the genomic 
DNA (gDNA) of each fungus by quantitative PCR (qPCR).

Material and Methods
Fungal growth conditions.- Aspergillus niger ATCC 

10864 and Trichoderma reesei QM6a were kindly dona-

ted by the Agricultural Research Service (ARS) Collection 
of the United States Department of Agriculture (USDA). 
The strains were maintained on potato-dextrose agar 
(PDA) slants at 28 °C in the dark until complete spore 
germination (∼5 days). Spores were collected with 0.1% 
Tween 80 solution, counted with a hemocytometer and 
diluted in sterile distilled water. 

Mixed biofilm formation.- Spore suspensions (1 x 
106 spores/mL) were used as inoculum for biofilm for-
mation in a proportion of 1.5% (v/v) for each fungus (Vi-
llena 2002). Briefly, 250 mL flasks containing a polyester 
fiber square (9.61 cm2) in 70 mL of sterile distilled water 
were inoculated with 1.05 mL of T. reesei spore suspen-
sion and incubated at 28 °C and 175 rpm for 2 h in order 
to allow spore adhesion. After this contact period, cloths 
were washed three times with sterile distilled water for 
15 min at 175 rpm in order to remove non-adhered spo-
res and transferred to new 250 mL flasks containing 70 
mL of sterile distilled water. Then, flasks were inoculated 
with 1.05 mL of A. niger spore suspension and incubated 
for 30 min under the same conditions than T. reesei spo-
res. Finally, co-inoculated cloths were washed as descri-
bed previously and transferred to new flasks containing 
70 mL of the culture medium for biofilm formation at 28 
°C and 120 rpm for 120 h (Villena & Gutiérrez-Correa 
2006). At each time point, mixed biofilms were recove-
red by filtration, washed with sterile distilled water and 
dried under vacuum at 45 °C for 2 h using a Concentrator 
Plus (Eppendorf, DE). Dry biofilms were kept at -80 °C 
until gDNA extraction.

gDNA extraction.- Freeze-dried biofilms were 
ground in liquid nitrogen using a mortar and pestle. 
Subsequently, 10 mg of pulverized biomass was used for 
gDNA extraction according to Cenis (1992) with some 
modifications. Briefly, biomass was disrupted in micro-
tubes containing 500 μL of lysis buffer and 200 mg of 0.5 
mm glass beads by vigorously vortexing for 10 min. Dis-
rupted biomass was digested with 5 μg of RNAse A for 10 
min at 37 °C. For protein and debris precipitation, 250 
μL of 3M sodium acetate was added. gDNA was precipi-
tated with room temperature ethanol and, after washing, 
pellets were resuspended in ultrapure water. gDNA inte-
grity was confirmed by agarose gel electrophoresis and 
purity ratios were calculated spectrophotometrically 
using a Nanodrop® (Thermo Fisher Scientific, US). The 
amount of extracted gDNA was determined by fluoro-
metry using the Qubit Quant-iT® dsDNA High-Sensitivity 
Assay Kit (Thermo Fisher Scientific, US) following the 
manufacturer’s instructions. For each biofilm, triplicate 
extractions were performed. 

Diphenylamine Assay.- Biomass-gDNA correlation 
was tested by the diphenylamine colorimetric method 
according to Zhao et al. (2013).

Primer design.- Sequences of actin and β-tubulin 
genes of each fungal species were downloaded from the 
National Center for Biotechnology Information (NCBI) 
database. Afterwards, Clustal Omega multiple sequence 
alignment software was used to identify non-conserved 
regions between genes of both fungi. From these regions, 
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specific primers for qPCR were designed using the Pri-
merQuest and OligoAnalyzer online tools (Integrated DNA 
Technologies, US). Primer sequences are shown in Table 1.

Specificity tests were performed in silico with Primer-
BLAST and FastPCR 6.0 programs using the sequences of 
both genes as template. Additionally, to experimentally 
confirm primer specificity, a qPCR assay was performed 
using 500 pg of mixed gDNA, A. niger gDNA or T. reesei 
gDNA as template. 

Table 1: Primer sequences used in this work.

Primer code Sequence (5’-3’)

An_act1
F: TGGGTTCTTCCCACTCTTCATA

R: GTGCTAACATGACGGGTAATTC

Tr_act1
F: ATCCCAATAGCTGACACCAG

R: TATAGCTATGGCGTGGTAAGGG

An_tubB2
F: GGTCTTGATTGGTGTTTGGTG

R: CTAAGAGACGATGTTCCATCCC

Tr_tubB1
F: CTGCAACTCTGGTGGCTTG

R: TCACGAGTCAGCTTGTAATCTC

qPCR conditions.- qPCR was carried out in 96-well 
plates using 10 μL reaction containing 1x commercial 
Kapa SYBR® Fast qPCR Master Mix (2x) Universal kit, 0.2 
μM of each primer and 1 μL of DNA extract (500 pg). Am-
plifications were performed using a CFX96TM Real-Time 
System thermocycler (Bio Rad, US) with standard PCR 
conditions of 95 °C for 3 min for initial denaturation fo-
llowed by 40 cycles of 3 s at 95 °C and 20 s of alignment/
extension/data collection at 60 °C. Finally, a gradient step 
from 65 to 95 °C with 0.5 °C increases for melting curve 
plotting was included. The purity of the PCR product was 
checked by the presence of a single melting peak. Each 
sample were analyzed in triplicate and the experiment 
was performed with both the actin and β-tubulin primers.

Standard curves.- For absolute quantification of T. re-
esei and A. niger gDNA in mixed biofilms, qPCR two-fold se-
rial dilution standard curves were generated for each pair 
of primers (An_act1, An_tubB2, Tr_act1, Tr_tubB1) using 
a known proportion of mixed gDNA according to Table 
2. The linear-regression equations obtained in each case 
(Ct versus Log DNA) allowed the calculation of the initial 
amount of DNA in the sample. To transform the DNA data 
into biomass (mg), extraction yield curves were generated 
using 1, 3, 5, 10 and 15 mg of mycelium from individual 
biofilms of A. niger and T. reesei at each time (Fig. S1).

Results and Discussion
In order to analyze mycelial proportion evolution on 

the biofilm over time, mixed biomass was collected from 
48 to 120 h. In this regard, standard curves for qPCR 
quantification were generated using specific primers 
(Fig. 1). Mixed gDNA-based curves were used because it 
allows to recreate or simulate the reaction conditions of 
mixed gDNA samples (Daly et al. 2017), such as variable 
A. niger/T.reesei proportions (Table 2). Non-specific am-
plification (mispriming) and amplification between pri-

mers (primer-dimers) has been previously reported as a 
consequence of low copy number of target sequence and 
high primer concentration at the beginning of PCR reac-
tion (Chou et al. 1992, Brownie et al. 1997). In fact, two 
melting peaks have been observed only when A. niger 
or T. reesei gDNA proportion was set below 0.39% (data 
not shown), indicating that non-specific gDNA interferes 
with specific primers’ amplification and this interference 
depends on target copy number. 

Table 2: A. niger and T. reesei gDNA proportions in qPCR standard 
curves.

A. niger/T. reesei 
gDNA (pg/pg)

A. niger/T. reesei 
gDNA proportion (%)

640/40 94.12/5.88

320/80 80/20

160/160 50/50

80/320 20/80

40/640 5.88/94.12

Biomass data (mg) of mixed biofilms was inferred 
from gDNA employing extraction yield curves made for 
each fungal species and each time point. Relationship 
between gDNA and biomass was confirmed to be linear 
in all extraction yield curves with Pearson’s coefficient 
of determination (R2>0.99) and in the whole mixed cul-
ture by using the diphenylamine colorimetric method 
(R2=0.94). 
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 Figure 1: qPCR standard curves of (A) actin primers An_act1 (empty 
squares) and Tr_act1 (filled squares) with efficiencies of 98.54% and 
95.23%, respectively; and (B) β-tubulin primers An_tubB2 (empty 
squares) and Tr_tubB1 (filled squares) with efficiencies of 99.28% 
and 94.69%, respectively. (n = 3).
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Other authors have used specific biomass quan-
tification methods. Chatterjee et al. (2016) used a 
quantification method based on densitometry of 
specific restriction fragment patterns (RFLP-like), 
however, it lacks a gDNA extraction and PCR nor-
malization. Others have reported biomass content 
in mixed cultures in terms of gDNA proportion 
measured by qPCR (Arfi et al. 2013, Benoit- Gelber 
et al. 2017). Nevertheless, since proportions of ex-
tracted gDNA from a mixed sample do not corres-
pond necessarily to proportions of mixed biomass, 
results might be biased. On the other hand, there 
are other authors that have established methods 
for quantifying specific biomass based on DNA data 
correction with extraction yield values (Jonkers et 
al. 2012, Song et al. 2014), and even correction for 
substrate interference on these yields (Daly et al. 
2017). Here, we present a corrected method that 
accounts not only for inherent differences between 
species-specific gDNA extraction yields, but also for 
natural changes in mycelial composition through 
time, such as melanin deposition and cell wall har-
dening (Karakousis et al. 2006), or secretion of 
stress-related pigments as a result of mixed culture. 
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Figure 2: Mycelial abundance of A. niger and T. reesei mycelia in 
terms of inferred dry weight (A) and biomass percentage using 
actin-specific primers (B) (n = 3).

Results of specific quantification of biomass in 
the mixed culture composed of A. niger and T. ree-
sei are shown in Figure 2 in terms of biomass per-
centage. Quantification using β-tubulin primers was 
almost identical to actin primers (data not shown). We 
detect that mycelium proportion in biofilms changed 
over time: at 48 h, 62% of A. niger and 38% of T. reesei; 
at 72 h, 53.5% and 46.5%; at 96 h, 84.5% and 15.5% 
and at 120 h, 95.9% and 4.1%, respectively. In this mi-
xed culture, it is remarkable the initial and faster T. reesei 
growth, in comparison to A. niger from 48 to 72 h (Figure 
2A). However, in spite of its growth limitation, A. niger 

could overcome T. reesei, showing a highly competitive 
fitness that has been previously reported for this fungus 
(Chatterjee et al. 2016, Kolasa et al. 2014). Such beha-
vior might be explained, rather than by growth rates, by 
the potential capacity of each competitor to establish 
antagonistic (e. g., secondary antifungal metabolites, cell 
wall-degrading enzymes) and defensive strategies (e. g., 
detoxification systems, drug resistance transporters) for 
displacing its “rival”, as mentioned earlier (Hiscox et al. 
2018). Undoubtedly, enzymatic production in mixed cul-
tures is dependent on this behavior, and future studies 
for improving lignocellulase yields should use this quan-
tification method to assess properly individual contribu-
tion of mixed-cultured fungi to enzymatic secretion.

Conclusions.- A specific method to indirectly quanti-
fy biomass in mixed cultures was developed. qPCR reac-
tion conditions and species-related biomass differences 
that interfere with gDNA yields have been corrected by 
using mixed gDNA qPCR standard curves and extraction 
yield curves for each fungus and each time point. Relati-
ve abundance results show that the presented method 
for specific biomass quantification offers valuable infor-
mation about mixed culture composition and biological 
interactions linked to lignocellulase production.
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Figure S1. gDNA extraction yield curves of A. niger mycelium collected from 48 (A), 72 (B), 96 (C), 120 (D) hours of growth and T. reesei 
mycelium collected from 48 (E), 72 (F), 96 (G), 120 (H) hours of growth. Slopes represent extraction yields and correlation coefficients are 
shown (n=3). 


