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ABSTRACT 
 
Recent advances in computer vision are leveraging many technological developments in 
modern industry and automation. In this tutorial, it is presented a review of computer vision 
methods and applications relevant to the use of cameras as measurement devices in the 
automotive industry and robotics. The methods include algorithms for edge and ellipse 
detection, camera calibration, 3-D reconstruction and stereo vision. The applications are 
elaborated through simulations of three key problems: Detection of rims in automotive wheels; 
estimation of the calibration angles of vehicles and; trajectory reconstruction using stereo 
vision. These applications allow to demonstrate the potential of vision-based technologies in 
solving complex engineering problems in an automated fashion using cameras as sensors. As a 
result, three general purpose methodologies are proposed for solving problems of industrial 
need that would serve as guidelines for further developments in current and other related 
areas. 
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RESUMEN 

Avances recientes en visión computacional vienen favoreciendo el desarrollo tecnológico en la 
industria y automatización modernas. En este tutorial, se presenta una revisión de métodos de 
visión computacional y aplicaciones relevantes para el uso de cámaras como dispositivos de 
medición en la industria automotiva y robótica. Los métodos incluyen algoritmos para  
detección de bordes y elipses, calibración de cámaras, reconstrucción 3-D y visión estéreo. Las 
aplicaciones son elaboradas utilizando simulaciones en tres problemas fundamentales: 
Detección de aros en ruedas automotivas; estimativa de los ángulos de calibración en vehículos 
y; reconstrucción de la trayectoria de un vehículo usando visión estéreo. Estas aplicaciones 
demuestran el potencial de los métodos de visión computacional para resolver problemas de 
ingeniería complejos de manera automatizada utilizando cámaras como sensores. Como 
resultado, son propuestas tres metodologías de propósito general para solución a problemas 

mailto:aldodiaz64@gmail.com


con demanda industrial y que pueden servir como guías para desarrollos futuros en áreas 
afines o relacionadas. 

Palabras Clave: Visión computacional, detección de aros, ángulos de calibración de vehículos, 
adometría estéreo 

1. INTRODUCTION 

Computer vision is the science of extracting information and knowledge from images in order 
to provide an understanding of the world based on camera observations. Currently, the 
research on autonomous vehicles has driven many technological advances in computer vision 
methods and applications. Some of the state-of-the-art computer vision algorithms are 3-D 
reconstruction from multiple camera views, visual odometry (VO) and visual SLAM 
(simultaneous localization and mapping or structure from motion), which enable many 
applications such as autonomous navigation, scene reconstruction, map creation and 
exploration, etc. 
 
In this work we present a tutorial on the use of computer vision applied to solve actual 
problems in the automotive industry. More specifically, we present algorithms for the use 
cameras as measuring devices including edge and ellipse detection, camera calibration, 3-D 
reconstruction and stereo vision. We motivate these algorithms with three industrial 
applications: Detection of wheel rims; a system to estimate the calibration angles of vehicles 
and; the reconstruction of the trajectory of a vehicle using stereo vision. 
 
This tutorial is referenced on a previous work in computer vision [1], but with dedicated 
attention to the applications in the automotive field including extended theory and results. 
Therefore, it can be used as a self-contained introduction for engineers and practitioners to 
motivate further developments that use computer vision in the automotive industry and 
related fields. The methods were carefully selected according to the challenges presented on 
each application. For instance, objection detection tasks on Section 2.1 and Section 2.2 are 
solved using shape detection techniques. Section 2.3 to Section 2.5 introduce the fundamental 
techniques for the use of cameras as measuring devices allowing metrology applications such 
as measuring angles and trajectories. 
 
The applications provide computer vision methodologies at an entry level to important 
problems in Advance Driver Assistance Systems (ADAS), Wheel Alignment and Mobile 
Robotics. More specifically, the first application discusses how to detect rounded shapes in 
images, which is important for obstacle avoidance [2], the second application shows an 
automatic approach for detecting the wheel alignment angles of vehicles using cameras as a 
low cost alternative to laser-based devices [3] and, finally, the third application shows an 
application of stereo vision in visual odometry to recover the trajectory of a car-like robot in 
adverse scenarios where satellite information from the GPS is not accessible [4]. 
 
The text is organized as follows: Section 2 presents the theory and foundations of computer 
vision methods; Section 3 presents three applications of these methods in the automotive 
industry and robotics; Section 4 outlines the final remarks and conclusions. 
 
 
 



2. Computer vision methods 

In this section we make a summary of selected computer vision methods and theory required 
for the applications introduced in the following sections. 

 
2.1. Edge detection 

The edges of an image are regions characterized by high changes of pixel intensities [5]. The 
image edges provide a rich source of information and a simplified representation of a complex 
image. Edges can be used to detect shapes in object detection tasks such as the lines of 
buildings or roads, or either to isolate geometrical shapes such as rounded objects (e.g. cells, 
wheels, balls). 
 
One of the most popular edge detectors was proposed by Canny in [6]. The Canny’s algorithm 
consists of convolving a grayscale image with a smoothing filter, typically a Gaussian square 
subimage, to obtain a coarse depiction of the original image. A binary threshold is applied to 
the smoothed intensities and the regions with the most salient changes are identified as the 
image edges. Fig. 1a shows the image of a building with pillars showing predominant straight-
line edges. The image is convolved with a Gaussian filter and the result of the thresholding 
process is shown on Fig. 1c with the image edges depicted as white lines. 

Fig. 1. Edge detection in the image of a building. 

2.2. Ellipse detection 

Shape detection methods are instrumental for identifying the geometrical shapes of objects in 
images. The detection of shapes has a wide variety of applications such as robot localization 
[5], object measurement [7], counting [8] and identification [9]. In the automotive industry, 
detecting wheel shapes may be useful for applications such as measuring wheel dimensions for 
detecting anomalies or identifying wheeled vehicles for obstacle avoidance on the road such as 
bicycles, motorcycles and cars. 
 
One of the most popular shape detectors is the so called Hough transform [10], [11]. The Hough 
transform operates over the edges of an image and is based on a voting principle which 
consists in parametrizing the shape to be detected (e.g., a line or an ellipse) to produce a 
mapping of the edge intensities to a space of parameters. An accumulator is incremented on 
each point coincidence of the curves in the parameter space and the voting is to choose among 
accumulator cells with the highest count representing the parameters of the detected shape. 
 
The parametrization of an ellipse of coordinates (𝑢, 𝑣) is given by 
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 𝑢𝑒 = (𝑢 − 𝑢0) cos Θ + (𝑣 − 𝑣0) sin Θ , (2) 

 𝑣𝑒 = −(𝑢 − 𝑢0) sin Θ + (𝑣 − 𝑣0) cosΘ , (3) 

where 𝑢0 and 𝑣0 are the coordinates of the ellipse center, 𝑎 and 𝑏 are the lengths of the semi-
major and the semi-minor axes, respectively, and Θ is the ellipse rotation angle.  
 

2.3. Camera calibration 

Camera calibration is the process of determining the parameters of a camera required to use it 
as a measuring device in computer vision and metrology applications. The camera parameters 
consist of the intrinsics (focal length, principal point, lens distortion) and the extrinsics 
(rotation and translation with respect to world coordinates). The following camera calibration 
procedure, based on the work in [12], uses a solid box as calibration pattern as depicted in Fig. 
2. 

Fig. 2. Solid calibration box and the world coordinates. 
 
The reference points for calibration are the positions of the eight vertices of the box in world 
coordinates 𝑩𝑘 and their pixel mappings �̂�𝑘, with 𝑘 = 1,… ,8; they are related by 

 𝑧𝑘�̂�𝑘 = 𝐊(𝐑𝑩𝑘 + 𝒕) . (4) 

 
Calibration consists in estimating the unknowns in (4), which are the depths 𝑧𝑘, the matrix of 
intrinsic parameters 𝐊, the rotation 𝐑, and translation 𝒕. The procedure consists of grouping 
sets of three different vertices, denoted 𝑩𝑘𝑎, 𝑩𝑘𝑏  and 𝑩𝑘𝑐, and their corresponding pixel 

mappings �̂�𝑘𝑎, �̂�𝑘𝑏  and �̂�𝑘𝑐  

 [𝑩𝑘𝐼
𝑇 ⊗  𝐈 − 𝑩𝑘𝐼𝐼

𝑇 ⊗ �̂�𝑘𝐼�̂�𝑘𝐼𝐼
−1] vec(𝐊𝑅) = 0 , (5) 

where ⊗ denotes the Kronecker product, 𝐈 is the identity matrix of size 3, vec(∙) denotes the 
matrix to vector operator which stacks the columns of matrix 𝐊𝑅 to yield a vector of size 9, 𝑩𝑘𝐼  

and 𝑩𝑘𝐼𝐼 are defined as 

 𝑩𝑘𝐼 = (0.5𝑩𝑘𝑎 − 𝑩𝑘𝑏 + 0.5𝑩𝑘𝑐) , (6) 

 𝑩𝑘𝐼𝐼 = (−𝑩𝑘𝑎 + 0.5𝑩𝑘𝑏 + 0.5𝑩𝑘𝑐) , (7) 

and the matrices �̂�𝑘𝐼  and �̂�𝑘𝐼𝐼  are defined as 

 �̂�𝑘𝐼 = [0.5 �̂�𝑘𝑎 −�̂�𝑘𝑏 0.5�̂�𝑘𝑐] , (8) 

 �̂�𝑘𝐼𝐼 = [− �̂�𝑘𝑎 0.5�̂�𝑘𝑏 0.5�̂�𝑘𝑐] , (9) 

and matrix 𝐊𝑅 is defined as 

 𝐊𝑅 = 𝐊𝐑 . (10) 



 
Equation (5) is extended adding 𝑛 ≥ 3 different sets of box vertices and their corresponding 
pixel mappings to form an overdetermined system of equations 
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Equation (11) is a system of 3𝑛 ×9 homogeneous equations with solutions in the right null 
space of 𝐏. However, the matrix 𝐏 may not have a null space since the pixel positions of the 
box vertices are only calculated approximately. Hence, the vector 𝒙 will be estimated as the 
right-singular vector of 𝐏 associated to the least non-zero value. The vector 𝒙 is reshaped into a 
matrix �̅�𝑅 of size 3, which is an estimate of matrix 𝐊𝑅, 

 �̅�𝑅 = reshape(𝒙, 3 × 3) . (12) 

 
By exploiting the orthogonal property of the rotation in (10), an estimate of the product of the 
matrix of intrinsic parameters 𝐊 and its transpose 𝐊𝑇 can be derived as 

𝐊𝑅𝐊𝑅
𝑇 = [

(𝑆𝑥𝑓)
2 + 𝑢0

2 𝑢0𝑣0 𝑢0

𝑢0𝑣0 (𝑆𝑦𝑓)
2
+ 𝑣0

2 𝑣0
𝑢0 𝑣0 1

] ≅ �̃�𝑅�̃�𝑅
𝑇  , (13) 

where matrix �̃�𝑅�̃�𝑅
𝑇  is the normalized version of �̅�𝑅�̅�𝑅

𝑇 , obtained by imposing its third row, 
third column element to be 1, as in the same element of 𝐊𝐊𝑇. The estimate of the matrix of 

intrinsic parameters, denoted �̃�, is obtained from the elements of �̃�𝑅�̃�𝑅
𝑇 , as 

 �̃� = [
�̃�𝑥𝑓  0  �̃�0 

 0  �̃�𝑦𝑓  �̃�0 

 0 0 1

] , (14) 

 �̃�0 ≅ row 1, column 3 of �̃�𝑅�̃�𝑅
𝑇  , (15) 

 �̃�0 ≅ row 2, column 3 of �̃�𝑅�̃�𝑅
𝑇  , (16) 

 �̃�𝑥𝑓 ≅ √row 1, column 1 of �̃�𝑅�̃�𝑅
𝑇 − �̃�0

2  , (17) 

 �̃�𝑦𝑓 ≅ √row 2, column 2 of �̃�𝑅�̃�𝑅
𝑇 − �̃�0

2  , (18) 

 
A first approximation of the rotation is derived from (10) and the results of (14) and (12), as 

 𝐑 = 𝐊−1𝐊𝑅 ≅ �̃�
−1�̅�𝑅 . (19) 

 
To satisfy the orthogonal property of rotations, the final rotation estimate, denoted �̅�, is 

obtained from the singular value decomposition (SVD) of matrix �̃�−1�̅�𝑅 

 �̅� = 𝐔𝐕𝑇 , (20) 

where 𝐔 and 𝐕 are matrices of the left and right singular vectors of �̃�−1�̅�𝑅, respectively. 
 



The estimate of the vector of depth reprojections, denoted 𝝀, and the translation vector, 
denoted 𝒕, are obtained simultaneously by extending (4) to 𝑛 ≥ 2 different pairs of vertices 
and their pixel mappings, and solving for 
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 , (21) 

where 𝝀 is defined as 

 𝝀 = [𝑧1 𝑧2 … 𝑧𝑛]𝑇 . (22) 

 

2.4. 3-D reconstruction 

Fig. 3 depicts the 3-D reconstruction of a point in the space 𝑷⋆ by triangulation. Triangulation 
consists of finding the closest point between the rays 𝒍 = (𝑂𝑙 , 𝑝𝑙) and 𝒓 = (𝑂𝑟 , 𝑝𝑟) from the 
origins of left and right cameras to the point 𝑷. An optimal solution to the 3-D reconstruction 
problem is obtained by minimizing the geometric error in spatial position and solving for 
depths 𝑧𝑙 and 𝑧𝑟 

 𝑧𝑙𝒑𝑙 − 𝑧𝑟𝐑
𝑇𝒑𝑟 − 𝒕 = 𝒆 , (23) 

[
𝑧𝑙
𝑧𝑟
] = [

𝒑𝑙
𝑇𝒑𝑙 −𝒑𝑙

𝑇𝐑𝑇𝒑𝑟
−𝒑𝑙

𝑇𝐑𝑇𝒑𝑟 𝒑𝑟
𝑇𝒑𝑟

]

−1

[
𝒑𝑙
𝑇𝒕

−𝒑𝑟
𝑇𝐑𝒕

] , (24) 

where 𝒆 is the error vector in spatial position of crossing rays, 𝒑𝑙 and 𝒑𝑟 are normalized pixel 
coordinates (focal length  𝑓 = 1𝑚) and (𝐑, 𝒕) are the extrinsic parameters denoting the 
transformation between camera views. 

Fig. 3. The 3-D reconstruction by triangulation. 
 

2.5. Stereo vision 
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Two camera views are related by epipolar geometry or the geometry of stereo vision. 

 
Fig. 4 illustrates the epipolar relations. The line connecting the camera projection centers is 
called baseline. The baseline intersects the image planes 𝜋𝑙 and 𝜋𝑟 at special points called 
epipoles 𝒆𝑙 and 𝒆𝑟. A point in the 3-D space 𝑷 is  described by the vectors 𝑷𝑙 = [𝑥𝑙 𝑦𝑙 𝑧𝑙]𝑇 
and 𝑷𝑟 = [𝑥𝑟 𝑦𝑟 𝑧𝑟]𝑇 and the camera projections 𝒑𝑙 = [𝑥𝑙

′ 𝑦𝑙
′ 𝑓𝑙]

𝑇 and 𝒑𝑟 =
[𝑥𝑟
′ 𝑦𝑟

′ 𝑓𝑟]
𝑇, where 𝑓𝑙 and 𝑓𝑟 are the focal lengths. The point 𝑷 and the projection centers 𝑂𝑙  

and 𝑂𝑟 describe a plane 𝜋𝑃 called epipolar plane (in gray color). The lines connecting the 
epipoles to the camera projection centers are called epipolar lines, denoted 𝒖𝑙 and 𝒖𝑟. The 
stereo configuration also imposes the epipolar constraint which restricts the match of a point in 
an image to the epipolar line on the opposite image. 

 

Fig. 4. The epipolar geometry. 

 
The translation vector 𝒕 and rotation matrix 𝐑 are the extrinsic parameters that relate the 
reference frames of the left and right cameras. Then, the points 𝑷𝑙 and 𝑷𝑟 are related by the 
rigid body transformation 

 𝑷𝑙 = 𝐑
𝑇𝑷𝑟 + 𝒕 . (25) 

 
The point 𝑷 is related to its perspective projection 𝒑 using the standard pinhole camera model 

 𝑧𝑙𝒑𝑙 = 𝑓𝑙𝑷𝑙 , (26) 

 𝑧𝑟𝒑𝑟 = 𝑓𝑟𝑷𝑟 . (27) 

 
The essential matrix 𝐄 of camera coordinates establishes an epipolar constraint between the 
left and right projections 

 𝒑𝑟
𝑇𝐄𝒑𝑙 = 0 , (28) 

 𝐄 = 𝐑�̂� , (29) 
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where �̂� is the skew-symmetric matrix expressing the cross product with the translation vector 
𝒕 × (∙). The points �̂�𝑙 and �̂�𝑟 are the pixel mappings in homogenous coordinates corresponding 
to 𝒑𝑙  and 𝒑𝑟 

 𝒑𝑙 = 𝑓𝑙𝐊𝑙
−1�̂�𝑙 , (30) 

 𝒑𝑟 = 𝑓𝑟𝐊𝑟
−1�̂�𝑟 , (31) 

where 𝐊𝑙 and 𝐊𝑟 are the calibration matrices of the left and right cameras, respectively. 
 
The fundamental matrix 𝐅 of image coordinates establishes the epipolar constraint between 
the left and right projections as 

 �̂�𝑟
𝑇𝐅�̂�𝑙 = 0 , (32) 

 𝐅 = 𝐊𝑟
−𝑇𝐄𝐊𝑙

−1 . (33) 

 
Matrices 𝐄 and 𝐅 can be estimated using the eight-point algorithm [9]. 
 
 
 
Fig. 5. The extrinsic parameters of a stereo system. 
 shows the geometric relations between the cameras and the world. Rotations 𝐑𝑙 and 𝐑𝑟 and 
translations 𝒕𝑙 and 𝒕𝑟 describe the origin of world coordinates 𝑂𝑤 in terms of the reference 
frames of the left and right cameras, respectively. The extrinsic parameters of the stereo 
system 𝐑 and 𝒕 are calculated with respect to the reference frame of the left camera, such as 

 𝐑 = 𝐑𝑟𝐑𝑙
𝑇 , (34) 

 𝒕 = 𝒕𝑙 − 𝐑
𝑇𝒕𝑟 . (35) 

 

 
Fig. 5. The extrinsic parameters of a stereo system. 

 

3. Automotive applications 

In this section we present three applications of computer vision methods in the automotive 
industry and robotics. In order to highlight the potential of the methods, we make use of 
simulations using Blender, which is an open-source platform used for generating virtual 
scenarios as ground truth data for evaluation [13], [14]. In Section 3.1, real images of a wheel 
were used. In Section 3.2, we used the 3-D model of a vehicle and an array of eight cameras 
grouped in pairs, as in Fig. 8. In Section 3.3, we used a 3-D indoors environment comprised of 
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texturized furniture, chairs, floor, ceiling, windows, natural and artificial illumination to enable 
the detection of visual keypoints. A 3-D model of an automotive vehicle with a mounted pair of 
stereoscopic cameras is also introduced in the environment. The car-like robot simulates an 
autonomous vehicle following a predefined trajectory inside a virtual environment, capturing 
stereo images. The ground truth path contains straight and diagonal trajectories with rotations 
at different angles. 
 

3.1. Detection of wheel rim 

In this application we describe a method for detecting rims in automotive wheel images using 
the Hough transform. Rim detection may be useful to identify wheeled vehicles in tracking 
applications [2]. Fig. 6a depicts a wheel image originally affected by poor illumination and lens 
distortion which are corrected using the histogram equalization and correction of lens 
distortion. Fig. 6b shows the resulting image including both corrections. 

                                                  
 

Fig. 6. Original and distortion-free wheel images. 
 

The ellipse containing the wheel rim is detected using the Hough transform applied to elliptical 
shapes [15], [16]. The procedure starts by converting the RBG image to grayscale intensities 

 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 , (36) 

 
The Canny algorithm is computed over the grayscale image in order to detect the edges of the 
wheel. The rim ellipse is searched over the image edges using the ellipse parametrization given 
in (37-38). Fig. 7 illustrates the detection results. Fig. 7b represents the detected wheel rim 
ellipse in red thick line.  

Fig. 7. Wheel rim detection 

3.2. Toe and camber calibration angles 

In this application we describe a system to recover the calibration angles of a vehicle. The 
system can be used as an automatic system to measure the wheel geometry and also to 
determine the toe and camber calibration angles. Fig. 8 depicts the measuring system 
consisting of four stereo camera subsystems associated to wheels 1, 2, 3 and 4. The stereo 
subsystems are attached to a support of fixed baseline to have the center of the wheels and 

(a) (b) Histogram equalization 

(a) 
Edge 

(b) 
Ellipse 



the optical axes of the cameras aligned at approximately the same height. The cameras are 
oriented towards the wheels and operate in precision and reference positions. Precision 
cameras 1, 3, 5 and 7 are perpendicular to the wheels to capture the largest possible images of 
the rims. Reference cameras 2, 4, 6 and 8 are oriented towards the geometric center of the 
system to capture images of the rims.  

 
Fig. 8. The wheel measuring system. 

 
Rim ellipses are detected using the procedure described in previous section. Fig. 9a shows the 
wheel images of cameras 7 and 8 and the identified rim ellipses (in dotted lines). The rim points 
on the left image are associated to epipolar lines on the right image due to the epipolar 
constraint. Epipolar lines intersect the rim ellipse at two points, as shown in Fig. 9b. The 
epipolar lines of the upper and lower sections of the rim at 10% of the rim diameter are filtered 
out, as shown in Fig. 9d. 

 
Fig. 9. The epipolar lines of a wheel contour and the matching process. 

 
 
a illustrates the result of the 3-D wheel rim reconstruction. The 3-D wheel rim is reconstructed 
by triangulation of corresponding 2-D rim points using (24). The wheel axis system is an auxiliary 
reference frame defined as the orthogonal 3-D basis resulting from the Principal Component 
Analysis (PCA) of the 3-D wheel rim, as illustrated in Fig. 10b. The vectors 𝒖 and 𝒗 are located on 
the wheel rim plane and the vector 𝒘 is collinear with the wheel spin axis. The local PCA 
coordinates are converted to global coordinates in the world reference frame using the 
extrinsic parameters of the global calibration process of the corresponding stereo subsystem. 

 
The camber and toe alignment angles of the front wheels are measured in a 3-D global system 
called the car reference frame defined by axis 𝑥′ in the direction of the line that connects the 
centers of wheels 3 and 4, axis 𝑦′ defined in the direction of the line that connects the centers 
of wheels 3 and 2 and axis 𝑧′ given by the cross product of 𝑥′ and 𝑦′. The triad 𝑥′, 𝑦′ and 𝑧′ is 
normalized to yield the unit vectors �̂�, �̂� and �̂� denoting the car reference frame. 

 

(a) Ellipse points. (b) Epipolar lines. 

c) Correspondences. (d) Pruning regions. 
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Fig. 10. 3-D reconstruction of wheel 4 and its associated PCA directions. 
 
Fig. 11a depicts the location of the wheel spin axes in the car reference frame. Vectors 𝒘1, 𝒘2, 
𝒘3 and 𝒘4 are collinear with the wheel spin axes and perpendicular to wheels 1, 2, 3 and 4, 
respectively. Vectors 𝒘3 and 𝒘4 are approximately collinear with the �̂�-axis. Vectors 𝒘1 and 𝒘2 
are perpendicular to the misaligned wheels 1 and  
2, respectively. 

 
Fig. 11. The car reference frame and the wheel alignment angles. 

 
Fig. 11b depicts the location of the wheel alignment angles in the car reference frame. Vector 
𝒘1𝑥𝑧 is the projection of 𝒘1 onto the �̂��̂� plane. The camber angle of wheel 1, denoted 𝛾1, is the 
angle from 𝒘1𝑥𝑧 to the �̂�-axis and is calculated as 

 𝛾1 = arccos (
𝒘1𝑥𝑧 ∙ 𝒘4
‖𝒘1𝑥𝑧‖‖𝒘4‖

) . (39) 

Vector 𝒘2𝑥𝑧 is the projection of 𝒘2 onto the �̂��̂� plane. The camber angle of wheel 2, denoted 
𝛾2, is the angle from 𝒘2𝑥𝑧 to the −�̂�-axis and is calculated as 

 𝛾2 = arccos (
𝒘2𝑥𝑧 ∙ 𝒘3
‖𝒘2𝑥𝑧‖‖𝒘3‖

) . (40) 

Vector 𝒘1𝑥𝑦 is the projection of 𝒘1 onto the �̂��̂� plane. The toe angle of wheel 1, denoted 𝜓1, is 

the angle from 𝒘1𝑥𝑦 to the �̂�-axis and is calculated as 

 𝜓1 = arccos (
𝒘1𝑥𝑦 ∙ 𝒘4

‖𝒘1𝑥𝑦‖‖𝒘4‖
) . (41) 

Vector 𝒘2𝑥𝑦 is the projection of 𝒘2 onto the �̂��̂� plane. The toe angle of wheel 2, denoted 𝜓2, is 

the angle from 𝒘2𝑥𝑦 to the −�̂�-axis and is calculated as 

 𝜓2 = arccos (
𝒘2𝑥𝑦 ∙ 𝒘3

‖𝒘2𝑥𝑦‖‖𝒘3‖
) . (42) 

 

3.3. Visual odometry 

Visual odometry (VO) is a technique to estimate the ego-motion of a vehicle using imaging 
sensors. VO has gained recent attention as a technique to achieve autonomous navigation in 

𝒖4 

𝒗4 

𝒘4 

(a) 3-D wheel rim edge reconstruction. (b) The wheel axis system. 



mobile robotics. In the following application the path of robot moving in an unstructured 
environment is recovered using a stereo camera system in a simulated scenario [17]. 
 
The system setup consists of two cameras of 720×480 resolution and fixed baseline mounted 
on a mobile robotic platform. The extrinsic parameters of the stereo system are rotation matrix 
𝐑 and translation vector 𝒕, as in Fig. 4. Calibration is performed using the algorithm introduced 
in previous section to determine the intrinsic and extrinsic camera parameters. Local robot 
motion is estimated in the robot reference frame located at the projection center of the left 
camera. The world reference frame is arbitrarily located at the origin of the left camera at the 
initial position of the robot. 
 
The image matching is based on a practical implementation of the SIFT algorithm [18]. Four 
stereo images are captured at consecutive robot steps 𝑖 − 1 and 𝑖, where 𝑖 ∈ ℕ. The images are 
analyzed as in the sequence of Fig. 12. The image planes 𝜋𝑙 and 𝜋𝑟 represent the left and right 
camera images, respectively. The main assumption is that consecutive images preserve 
keypoint correspondences whenever the robot undergoes a small displacement. The set of 
common keypoints between the four images is the input data for VO estimation. 
 

 
Fig. 12. Stereo matching sequence. 

 
Fig. 13 illustrates the keypoint correspondences at two successive robot steps. Local robot 
motion is represented by rotation matrix 𝐑𝑖  and translation vector 𝒕𝑖. Local robot motion is 
recovered from the 3-D reprojections of the keypoints on the left camera, denoted 𝑷𝑘  and 𝑸𝑘, 
at robot steps 𝑖 − 1 and 𝑖, respectively, where 𝑘 is the keypoint index. The 3-D reprojections are 
calculated by triangulation, as in (24). 

The results are arranged in matrices of homogeneous coordinates �̂� and �̂� of size 4× 𝑘, 
according to 

 �̂� = [
𝑷1 𝑷2 … 𝑷𝑘
1 1 … 1

] , (43) 

 �̂� = [
𝑸1 𝑸2 … 𝑸𝑘
1 1 … 1

] . (44) 

Fig. 13. Keypoint correspondences and the robot motion model. 
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Local robot motion is estimated from the submatrices of the block matrix 𝐌 (transformation 

matrix) that relates matrices �̂� and �̂�, such as 

 𝐌 = �̂��̂�† , (45) 

 𝐑𝑡 = [
�̅�𝑖
𝑇 �̅�𝑖
𝟎𝑇 1

] , (46) 

where �̅�𝑖  is the 3×3 rotation matrix and �̅�𝑖  is the 3×1 translation vector, and 𝟎𝑇 is a zero matrix 
of size 3×1. 
 
Visual odometry is calculated by the composition of successive rotations and translations. The 
robot pose, denoted 𝑩𝑖, can be defined recursively as 

 𝑩𝑖 = 𝑩𝑖−1 + (∏�̅�𝑛
𝑇

𝑖−1

𝑛=0

) �̅�𝑖 ,       𝑖 > 0 , (47) 

or as in the explicit version 

 𝑩𝑖 = 𝑩0 + ∑ (∏�̅�𝑛
𝑇

𝑚−1

𝑛=0

) �̅�𝑚

𝑖

𝑚=1

,       𝑖 > 0 , (48) 

where 𝑩0 is the initial robot pose, �̅�0 = 𝐈3, and 𝐈3 is the identity matrix of size 3. 
 
The system is simulated in the 3-D graphics software Blender. In this application, a 3-D virtual 
indoors environment is used. The environment is comprised of textured office furniture, floor, 
ceiling, windows, and artificial illumination. A mobile robot is simulated by a stereo camera 
system of fixed baseline. The robot moves inside the virtual environment on a predefined 
trajectory, capturing images from both cameras as it traverses small increments of the distance 
along the path. Figure 14 depicts the reconstruction of a robot trajectory with 𝑖 = 11 steps. The 
ground truth trajectory contains straight and diagonal paths and rotations at different angles. 
The deviation error of the reconstructed path is measured in units of length as 

 𝑒𝑖 = ‖�̃�𝑖 − 𝑩𝑖‖ , (49) 

where �̃�𝑖 and 𝑩𝑖 are the estimated and the actual robot poses at step 𝑖, respectively. VO yields 
a Gaussian error distribution of mean 𝜇 = 0.2488𝑚 and standard deviation 𝜎 = 0.1035𝑚. The 
VO algorithm is plausible of being implemented in real-time scenarios [19]. The results may be 
improved in combination with state-of-the-art techniques in visual navigation for autonomous 
vehicles [4], [20]. 
 

Figure 14. The original robot path and the stereo visual odometry reconstruction. 
 
Conclusions 



In this paper we reviewed computer vision methods applied to automotive applications. The 
methods presented included edge and ellipse detection, camera calibration, 3-D reconstruction 
and stereo vision which in group constituted the foundations for the use of cameras as 
measuring devices. 
 
The automotive applications were the detection of wheel rim, the estimation of toe and 
camber calibration angles and a visual odometry system using a pair of cameras. The results 
demonstrated the potential of computer vision methods in solving actual problems of 
industrial relevance in automotive industry. 
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