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ABSTRACT 

The social, economic, and environmental consequences of the failure of an arch dam make it essential to evaluate its dynamic 
response to mitigate the risk of a disaster. Since the slenderness and flexibility of these dams tend to increase the fluid-structure 
interaction during an earthquake, this work compares the dynamic response of a hypothetical arch dam in the Marañón river, in 
northern Perú, for both full and empty-reservoir conditions. Three formulations were used to estimate the hydrodynamic 
pressures: Westergaard’s added mass, Eulerian and Lagrangian. The comparisons were performed for earthquakes of distinct 
seismogenic sources, previously matched to a uniform hazard spectrum with a return period of 10000 years. The finite element 
method was used to derive the seismic demands of the dam-reservoir-foundation system in COMSOL Multiphysics software, 
carrying out time-history analyses assuming linear elastic behavior of the dam and foundation domains and a massless foundation 
approach, ignoring the effect of waves propagation in the foundation but considering its stiffness. The results show that the 
Lagrangian and Eulerian formulations produce similar seismic demands, while Westergaard’s added mass formulation is 
conservative. The full-reservoir condition generally increases the seismic demands, but the results will depend on the boundary 
conditions assumed for the fluid and the characteristics of the earthquake, among other factors. Earthquakes matched to the 
same uniform hazard spectrum do not necessarily produce equal dynamic responses. 
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RESUMEN 
 

Las consecuencias sociales, económicas y ambientales de la falla de una presa de arco hacen que sea fundamental evaluar su 
respuesta dinámica para mitigar el riesgo de un desastre. Dado que la esbeltez y flexibilidad de estas presas tienden a aumentar 
la interacción fluido-estructura durante un sismo, este trabajo compara la respuesta dinámica de una hipotética presa de arco en 
el río Marañón, en el norte de Perú, tanto para condiciones de embalse lleno como vacío. Se utilizaron tres formulaciones para 
estimar las presiones hidrodinámicas: masa añadida de Westergaard, Euleriana y Lagrangiana. Las comparaciones se realizaron 
para terremotos de distintas fuentes sismogénicas, previamente emparejadas con un espectro de peligrosidad uniforme con un 
período de retorno de 10000 años. Se utilizó el método de elementos finitos para derivar las demandas sísmicas del sistema 
presa-reservorio-cimentación en el software COMSOL Multiphysics, realizando análisis de tiempo-historia asumiendo un 
comportamiento elástico lineal de los dominios de la presa y la cimentación y un enfoque de cimentación sin masa, ignorando el 
efecto de propagación de ondas en la cimentación pero considerando su rigidez. Los resultados muestran que las formulaciones 
lagrangianas y eulerianas producen demandas sísmicas similares, mientras que la formulación de masa agregada de Westergaard 
es conservadora. La condición de reservorio lleno generalmente aumenta las demandas sísmicas, pero los resultados 
dependerán de las condiciones de contorno asumidas para el fluido y las características del sismo, entre otros factores. Los 
terremotos que coinciden con el mismo espectro uniforme de amenazas no necesariamente producen respuestas dinámicas 
iguales. 
 
Palabras Clave: Análisis sísmico, Interacción fluido-estructura, Método de elementos finitos, Presas de arco 

 

1. INTRODUCTION 
 

The fluid-structure interaction is the physical 
phenomenon that modifies the dynamic response of a 
structure in contact with a fluid. The slenderness and 
flexibility of arch dams increase the interaction with the 
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reservoir, this modifies the dynamic characteristics of 
the dam and; therefore, the dynamic response to 
earthquakes [1] 

 
Westergaard, in the early 1930s, proposed a pseudo-

static formulation to estimate the hydrodynamic 
pressures in a concrete dam based on certain 
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simplifications [2], further this formulation was known 
as Westergaard's added mass. Subsequently, this 
formulation was generalized to include the flexibility 
and double curvature of arch dams [3], but still with 
certain limitations. More recent formulations, based on 
numerical methods, were developed with the advance 
of computers [4] being the most common the Eulerian 
[5]  and Lagrangian [6] formulations. These 
formulations try to deal with the simplifications 
introduced by Westergaard; however, they are not 
exempt of practical difficulties. 

 
The importance to mitigate the risk of arch dams’ 

failure makes it essential to include criteria not 
considered in the typical buildings analysis. For this 
reason, this study compares the dynamic response of a 
hypothetical arch dam located on the Marañón River 
considering the fluid-structure interaction under the 
generalized Westergaard’s added mass, Eulerian and 
Lagrangian formulations, as well as the dynamic 
response of the empty-reservoir condition. The finite 
element method, in COMSOL Multiphysics software, is 
carried out to perform time-history analyses under 
earthquakes of different seismogenic source: 
Moquegua (2001, inter-plate), Tarapacá (2005, intra-
plate) and Pisco (2007, inter-plate) assuming linear 
elastic behavior of the dam and foundation domains 
and a massless foundation approach.  

 

2. BACKGROUND 
 

In the fluid-structure interaction, each physical 
domain is described by its own differential equations of 
motion; however, since it is a coupled phenomenon, it 
is not possible to determine the solution of one domain 
independently of the other. Therefore, boundary 
conditions on the common surface, called fluid-
structure interface, are required to obtain the coupled 
solution [7].  

 
The direction, intensity, and frequency content as 

well as the vertical component of the earthquake and 
the reservoir boundary conditions are the most relevant 
factors in the estimation of the hydrodynamic pressure, 
while the extent of the reservoir is irrelevant for 
extensions greater than three times the height of the 
dam [1]. 

 
2.1 WESTERGAARD’S ADDED MASS 
FORMULATION 

 
Westergaard, with certain assumptions, estimated 

that hydrodynamic pressures are approximate to the 
inertial effects produced by a prismatic body of water 
firmly added to the upstream face of the dam and 
forced to oscillate frictionlessly along with the dam, 
while the rest of the reservoir remains stationary [2]. 

These assumptions were: two-dimensional dam of 
infinite stiffness and vertical upstream face; reservoir of 
infinite extension in the upstream direction, perfectly 
incompressible fluid, and small displacements to ignore 
the effects of surface waves; and ground excitation 
limited to harmonic oscillation in the upstream-
downstream direction with periods greater than 1 
second.  

 
Subsequently, this formulation was generalized to 

include flexibility and double curvature of arch dams, 
i.e., the direction and magnitude of the hydrodynamic 
forces vary at each point of the dam [3]. Also, since the 
added masses increase the mass of the system without 
modifying its stiffness, the vibration frequencies of the 
coupled system are lower than the frequencies of the 
dam alone, which is expected to occur in the fluid-
structure interaction phenomenon. However, this 
generalization is only an extrapolation of the classical 
Westergaard formulation; therefore, it still ignores the 
fluid compressibility and the effects of energy 
dissipation by waves transmission from the reservoir to 
the dam and the ground, as well as surface waves 
dissipation [8]. 

 
The Generalized Westergaard formulation assumes, 

like the classical formulation, that the pressure at any 
point i on the upstream face of the dam is equivalent to 
consider the inertial effects of a prismatic body of water 
oscillating with the dam [9] as determined by (1) and 
shown in Fig. 1: 

 
 

 

Fig. 1. Westergaard’s added mass in arch dams. [9] 

 

 
Under the finite element method interpretation, 

𝐧T�̈�i is the normal component of the acceleration at 
node i, ρw the water density, H the depth of the 
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reservoir, and Zi the distance from node i to the 
reservoir bottom. Also, b(Zi) represents the thickness of 

the prismatic body of water, of unit length in the X 
direction, at elevation Zi. 

The vector of equivalent inertial forces at node i (𝐅i) 
is obtained by multiplying the pressure and the tributary 
area (𝐧Ai) of the node i. 

Where 𝐦ai
 is the matrix of added mass to node i. 𝐅i 

is assembled in a similar way to the stiffness matrix; 
therefore, the matrix of inertial forces (𝐅a) applied to 
the dam is: 

 

 
 
𝐌𝑎  is the matrix of mass to be added in the dam and 

�̈� the acceleration vector of the coupled system. 
 

 
 
𝐌, 𝐂, 𝐊 are the mass, damping and stiffness matrices 

for the coupled system, respectively; and �̇�, 𝐮 are the 
velocity and displacement vectors for the coupled 
system, respectively. 

 

2.2 EULERIAN FORMULATION 
 
2.2.1 Equation of Motion 

 
The equation of motion of the dam-foundation 

domain (Ωs)  is described in terms of displacement, 
while the fluid domain (Ωf) ones in terms of pressure 
[10]. Therefore, compatibility and equilibrium at the 
interface of both systems is ensured by interface 
equations. COMSOL Multiphysics considers the 
pressure as degree of freedom defining the fluid 
domain as an acoustic domain [11]. 
 

The equation of motion for the fluid domain or 
Helmholtz equation (5) is obtained by combining the 
Navier-Stokes and continuity equations under the 
Eulerian approach, previously simplified by the 
following hypothesis: low fluid compressibility, low 
velocities, and ignore viscous effects as well as body 
forces [7].  

 

 

Where 𝛁 is the gradient operator, p the 
hydrodynamic pressure and p̈ its second derivative with 
respect to time, and c the speed of wave sound in water 
defined in terms of the modulus of compressibility (κ) 
and the water density as [10]: 

 

 
 

2.2.2 Boundary Conditions 
 
The dam-reservoir interface (ΓI) represents the 

coupled motion of the dam and the fluid; therefore, the 
normal displacements at this interface must be 
compatible in both domains [7]: 

 

 
 

Where 𝐧T�̈�s is the normal component of the 
acceleration in the structure domain. 

 
The reservoir-ground interface (ΓD) represents the 

phenomenon of energy dissipation by incidence and 
reflection of pressure waves on the ground [10]: 

 

 
 
Where ṗ is the first derivative with respect to time of 

the pressure and α the reflection coefficient defined as 
the ratio between the amplitude of incident and 
reflected wave. Typically, it can be considered equal to 
0.3 for the sediments deposited on the bottom of the 
river and equal to 0.7 for the rocks on the lateral slopes. 

 
The free surface (ΓL) represents the phenomenon of 

energy dissipation by surface waves. Nevertheless, if 
the energy dissipation by surface waves is ignored, it 
can be considered that the hydrodynamic pressure is 
equal to zero at this surface [7]. This assumption is a 
valid approximation since the surface waves energy is 
much smaller than the energy generated by the 
hydrodynamic pressure. 
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The infinite extension of the reservoir (ΓT) 
represents the outcoming waves in the normal 
direction (no incoming waves) [7], which is known as 
the equation of Sommerfield. 

 

 
Fig. 2 shows the boundary conditions 

 
 

 
 
 
 
 
 
 

 
 
 

 
 

Fig. 2. Boundary conditions – Eulerian formulation 

 
 

 
 

2.2.3 Discrete Finite Element Formulation 
 
The discrete form of the equation of motion of dam-

foundation domain is obtained by the Galerkin’s 
method and replacing the boundary condition 
corresponding to the dam-reservoir interface [10]. 

 

 
 
Where 𝐌s, 𝐂s, and 𝐊s are the mass, damping and 

stiffness matrices respectively for the dam-foundation 
domain; 𝐑 the interaction matrix, and 𝐅s

ext the vector 
containing the external forces applied to the system. 

Moreover, �̂̈�s, �̂̇�s, and �̂�s are the nodal acceleration, 
velocity, and displacement vector respectively for the 
dam-foundation domain and 𝐩 the nodal pressure 
vector for the fluid domain. 

 
 

 
 

 
 

 
 
 

 

 
𝐍u and 𝐍p are the shape-functions for the 

displacement and pressure respectively, ρs the dam-
foundation density, μs the dam-foundation viscous 
damping per unit volume, 𝐋 the matrix relating strain 
and displacements, 𝐁 the matrix relating strain and 
stress, and 𝐛s the body force in the dam-foundation 
domain. 

 
The discrete form of the equation of motion for the 

fluid domain is also obtained by Galerkin's method and 
replacing the boundary conditions [10]. 
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Where 𝐌f, 𝐂f and 𝐊f are the pseudo-mass, pseudo-

damping, and pseudo-stiffness matrices respectively 

for the fluid domain,  �̂̈� and �̂̇� are first and second 
derivative with respect to time of the nodal pressure 
vector respectively. 

 

 
 

 
 

 

allows to transform the hydrodynamic 
pressures into forces applied on the structure, as well 
as the accelerations of the structure into hydrodynamic 
pressures. 

 
These equations can be rewritten in their coupled 

form as: 
 

2.3 LAGRANGIAN FORMULATION 
 
2.3.1 Equation of Motion 

 
The equations of motion of the dam-foundation 

domain as well as the fluid domain are described in 
terms of displacement [12]. Moreover, the fluid is 
assumed to be an elastic and almost incompressible 
linear material (Poisson’s coefficient close to 0.5) 
without viscosity and irrotational [13]. 

 
The hydrodynamic pressure at any point is 

approximated as the mean stress at that point which is 
defined, for an isotropic material, as the product of the 

volumetric strain and the modulus of 
compressibility [7]. 
 

 

 

 
 

2.3.2 Boundary Conditions 
 
The boundary conditions are like those determined 

in the Eulerian formulation but expressed in terms of 
displacements. Fig. 3 shows these boundary conditions. 

 

The dam-reservoir interface given by:  
 

 
 

The reservoir-ground interface could typically be 
represented assuming compatibility of displacements 
between the ground and the reservoir; however, this 
would ignore the energy dissipation by incidence of 
waves in the ground. A better alternative is to use 
viscous dissipators connecting the ground and the 
reservoir, whose dissipation coefficient for 
compressional waves is estimated by equivalence 
between acoustic and mechanical impedance. Since this 
equivalence is only an approximation, a correlation 
factor denoted as a is required. In this study a = 0.5 is 
considered as values between 0.5 and 0.75 seem to be 
adequate [14]. 

 
 

 

Where  is the tensor stress and the vector 
velocity in the fluid domain. 

 

The free surface , if it is not considered any 
constraint on displacements, strains will occur on the 
surface, which can be interpreted as waves motion. 

 
 
The infinite extension of the reservoir (ΓT) , Lysmer-

Kuhlemeyer viscous dissipators [15] are placed  in the 
direction normal to the surface to dissipate the 
compressional waves outcoming and reduce the 
amplitude of the reflected waves on this boundary. 
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Fig. 3. Boundary conditions – Lagrangian formulation 

 
 

2.3.3 Discrete Finite Element Formulation 
 
The discrete form of the equation of motion for the 

dam-foundation domain is like that obtained for the 
Eulerian formulation except that: 

 

 
 

Where  are the Neumann boundary condition in 
dam-foundation domain. 

 
A mixed formulation is required to discretize the 

equation of motion for the fluid domain. The mixed 
formulation allows expressing the equation in terms of 
displacement and pressure as independent variables, 
since, if the equation of motion for the fluid domain is 
discretized from an irreducible formulation, based on 
displacements as the only degree of freedom, 
numerical problems related to volumetric strains may 
be incurred. These numerical errors occur when 
considering a high compressibility modulus that 
fictitiously amplifies the volumetric strains, which in 
turn generate a fictitious mean stress [7]. COMSOL 
Multiphysics considers this mixed formulation selecting 
the option of Nearly Incompressible Material [11]. 

 
The discrete form of the equation of motion for the 

fluid domain is expressed by: 
 

 
 
 
 
 
 
 
 

 
 
 

Where the matrices ,  , and  are defined 
by: 

 
 

 

 

 
 

 
 

 
 
 

Where G is the shear modulus, 

and  

 
 
These equations can be rewritten in their coupled 

form as: 
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3. METHODOLOGY 
 
The dynamic analyses, in the time domain, are 

carried out with a direct integration method and the 
generalized alpha algorithm [16], which allows to 
control the numerical dissipation at high frequencies 
without introducing considerable dissipation at low 
frequencies. 

 
Linear and elastic behavior is considered for dam-

foundation domain as well as for the fluid domain in the 
Lagrangian formulation. 

 

3.1 GEOMETRY 
 
The geometry of the dam follows the 

recommendations of USACE [17]: 175m height, 7.8m 
width at crest and 33.5m width at base. Moreover, 
foundation and reservoir extension follow the 
recommendations of Chopra and Fok  [18] as well as the 
conclusions provided by Sevim et al. [19]: 1900m along 
the X-axis, 1100m along the Y-axis, and 175m below the 
dam base level for the foundation, and 555m extension 
in the upstream direction for the reservoir. 

 
Fig. 4 shows the dimensions of the finite element 

model. 

 

Fig. 4. Dimensions of Finite Element Model in meters – 
Arch dam 

 

3.2 FINITE ELEMENT MODEL 
 

10-node tetrahedral elements of the Lagrangian 
family with quadratic shape-functions are used. The 
Westergaard formulation does not require a fluid 
domain as the water is represented by added masses 
per unit area on the upstream face of the dam. On the 
other hand, the fluid domain is represented as a physical 
domain in both Eulerian and Lagrangian formulations.  

 
Fig.5 shows the quality of the mesh determined by 

an absolute scale from 0 to 1 (from low to high quality) 

[11]. Dam mesh elements are of 15m maximum size and 
0.75 average quality, reservoir mesh elements range 
from 50 to 60m and have 0.67 average quality, and 
foundation mesh elements range from 50m to 200m 
and have 0.5 average quality. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Quality of the elements (a) Dam, (b) reservoir, 
and (c) foundation 

 
The mesh sizes used to analyze the model consider 
the User’s guide recommendations of COMSOL 
Multiphysics for wave propagation problems [20]. 
When elements of the Lagrangian family with 
quadratic shape functions are used, these 
recommendations establish that: First, it is 
necessary to define a maximum element size equal 
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to one-fifth of the minimum wavelength to be 
represented, and then verify if the number of 
degrees of freedom obtained is at least 1728 times 
the volume of the model measured in wavelength 
units. 

3.3 MATERIALS 
 
The elastic properties of the concrete dam and the 

foundation are listed in TABLE I. It is considered 5% 
Rayleigh damping associated with the first (2.35Hz) and 
sixth (5.59Hz) vibration modes of the dam-foundation 
system. 

 
TABLE I. Elastic properties of concrete and foundation 

Material Young’s 
module (MPa) 

Poisson Density 
(kg/m3) 

Concrete 38000 0.25 2300 
Foundation 

(Rock) 
65000 

0.25 Massless 

 
The elastic (Lagrangian formulation) and acoustic 

properties (Eulerian formulation) of the reservoir 
(water) are listed in TABLE II. 
 

TABLE II. Elastic and acoustic properties of water 

Formula
tion 

Modulus 
of 

Compres
sibility 
(MPa) 

Poisso
n 

Dens
ity 

(kg/
m3) 

Wav
e 

spee
d of 
soun

d 
(m/s) 

Reflection 
coefficient 

Sedim
ents 

Ro
ck 

Elastic 
(Lagrang

ian) 
- - 1000 1440 0.3 0.7 

Acoustic 
(Eulerian

) 
2100 ~0.50 1000 - 0.3 0.7 

 

 

3.4 DYNAMIC ANALYSIS 
 
The dynamic time-history analyses are performed 

for synthetic earthquakes determined for the coast of 
Peru [21], which, following the guidelines of 
international standards, are previously matched to the 
uniform hazard spectrum with a return period of 10000 
years for the Marañón zone as shown in Fig. 6. Gravity 
loads are ignored to focus on the dynamic response. 

 
Massless foundation approach is valid to represent 

the foundation since spatial variations of acceleration 
along the dam-foundation interface are insignificant in 
rigid rocks. This approach ignores the effects of waves 
propagation, but considers the effects of flexibility [22]. 
 
 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Spectral acceleration (a) X-direction, (b) Y-
direction, and (c) Vertical 

 

4. RESULTS 
 

In the following figures, as a convention, it is 
considered that the positive displacements and 
accelerations correspond to movements in the 
upstream direction. 

 
Fig. 7 shows the maximum relative radial 

displacements in the central section. Westergaard’s 
formulation produces higher radial displacement than 
Eulerian and Lagrangian formulations, which produce 
similar results. Likewise, the empty-reservoir condition 
produces considerably lower results than the full-
reservoir condition, except for the Tarapacá 
earthquake, which is mainly associated to the frequency 
content of that earthquake.  
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(a) 

 
(b) 

 
(c) 

 
Fig. 7. Relative Radial Displacement at central section 

(a) Moquegua, (b) Pisco, and (c) Tarapacá  
 

Harmonic analyses are carried out in both horizontal 
directions to illustrate the dependency of the response 
with the frequency. Fig. 8 shows that empty-reservoir 
condition produces higher response than Eulerian 
formulation for some excitation frequencies. 

 

 
(a) 

 
(b) 

Fig. 8. Radial Displacement at crest / Excitation 
amplitude (a) X-direction and (b) Y-direction 

 
Fig. 9 and 10 show the time-history of the radial 

relative displacements and the radial absolute 
accelerations at the crest, respectively. Eulerian and 
Lagrangian formulations follow the same response 
pattern, while Westergaard’s formulation and the 
empty-reservoir condition follow different patterns 
between them and regarding to the other responses. 

 

 
(a) 

 
(b) 
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(c) 

Fig. 9. Relative Radial Displacement at crest (a) Moquegua, (b) Pisco, 
and (c) Tarapacá 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Absolute Radial Acceleration at crest (a) Moquegua, (b) 
Pisco, and (c) Tarapacá 

 

Fig. 11 and 12 show the time-history of hydrodynamic 
pressures at the bottom of the reservoir (elevation 660 
m a.s.l.) and at the mean height of the reservoir (762 m 
a.s.l.), respectively. Eulerian and Lagrangian 
formulations follow the same response pattern, from 
the engineering point of view, while the response for 
the Westergaard formulation follows a different 
pattern. Also, hydrodynamic pressure is higher at the 
mean height than at the bottom of the reservoir as 
hydrodynamic pressure depends on the acceleration of 
the dam at each point of the fluid-structure interface in 
contrast to the hydrostatic pressure that depends only 
on the depth from the free surface. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Hydrodynamic pressure at bottom of the reservoir (a) 
Moquegua, (b) Pisco, and (c) Tarapacá 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12. Hydrodynamic pressure at mean height of 
the reservoir (a) Moquegua, (b) Pisco, and (c) Tarapacá 

 

Fig. 13 to 15 show the maximum hydrodynamic 
pressures. Pressure distribution, maximum values as 
well as the time when they occur are very similar 
between the Eulerian and Lagrangian formulations. 
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(a)                                                                                           (b) 
 

Fig. 14. Maximum hydrodynamic pressure (MPa) Pisco earthquake (a) Eulerian t=19.59 s and (b) Lagrangian t=19.58 s 
 
 

 
                                                               a)                                                                                                                                   b) 

Fig. 15. Maximum hydrodynamic pressure (MPa) Tarapacá earthquake (a) Eulerian t=23.16 s and (b) Lagrangian t=23.17 s 
 
 

Fig. 16 shows the maximum relative radial 
displacements in the central section. Eulerian and 
Lagrangian formulations do not show an important 
variation between the earthquakes. Nevertheless, 
Westergaard’s formulation and the empty-reservoir 
condition do show higher displacement for Moquegua 
and Tarapacá earthquakes, respectively. 

 
(a) 

 
 

(b) 
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(c) 

 
(d) 

 
Fig. 16. Relative Radial Displacement at central section (a) 

Westergaard, (b) Eulerian, (c) Lagrangian, and (d) Empty-reservoir 
 
 

CONCLUSIONS 
 

- Westergaard’s formulation produces conservative 
results compared to the other formulations analyzed. 
Likewise, Eulerian and Lagrangian formulations will 
produce similar results, from an engineering point of 
view, if the appropriate parameters are considered for 
the variables that define the behavior of the model, 
such as the elastic constants (Poisson's coefficient 
and compressibility modulus) and boundary 
conditions, mainly for energy dissipation at the 
reservoir-ground interface. 

- The fluid-structure interaction generally increases the 
dynamic response of an arch dam with respect to the 
empty-reservoir condition; however, this will depend 
on the characteristics of the earthquake considered. 
As a particular case, in the Moquegua and Pisco 
earthquakes (inter-plate) a notorious increase of the 
dynamic response due to the fluid-structure 
interaction is observed, while in the Tarapacá 
earthquake (intra-plate) this increase is smaller, even 
obtaining higher relative radial displacements for the 
empty-reservoir condition at the elevation near the 
dam crest respect to Eulerian formulation. 

- Lagrangian formulation has the advantage that it can 
be evaluated in many commercial computer 

programs. 

 

REFERENCES 
 

[1] J. C. Mosquera, “Efectos hidrodinámicos en el 
análisis sísmico de presas bóveda,” Ing. Agua, vol. 2, no. 
5, pp. 45–50, Apr. 1995. 
[2] H. M. Westergaard, “Water pressure on dams 
during earthquakes,” Am. Soc. Civ. Eng. Trans., no. 1835, 
pp. 418–433, Nov. 1931. 
[3] J. S.-H. Kuo, “Fluid-Structure interactions 
added mass computations for incompressible fluid,” 
Earthquake Engineering Research Center, University of 
California, Berkeley, Technical Report N° UCB/EERC-
82/09, Aug. 1982. 
[4] B. A. Zeidan, “Seismic Finite Element Analysis 
of Dam-Reservoir-Foundation Interaction,” Egypt, 2015, 
p. 13. 
[5] R. Dungar, “An efficient method of Fluid-
Structure coupling in the dynamic analysis of 
structures,” Int. J. Numer. Methods Eng., vol. 13, pp. 93–
107, 1978. 
[6] E. L. Wilson and M. Khalvati, “Finite elements 
for the dynamic analysis of fluid-solid systems,” Int. J. 
Numer. Methods Eng., vol. 19, pp. 1657–1668, 1983. 
[7] O. C. Zienkiewicz and R. L. Taylor, Finite Element 
Method: The Basis, 5th ed., vol. 1. London, 2000. 
[8] A. Tahar, “Dynamic Soil-Fluid-Strucutre 
Interaction Applied for Concrete Dam,” Doctoral Thesis, 
Université Aboubekr Belkaïd Tlemcen, Algeria, 2011. 
[9] U. S. Army Corps of Engineers, “Theoretical 
Manual for Analysis of Arch DamsArch,” Department of 
the Army, Washington, D. C., Technical Report ITL-93-1, 
Jul. 1993. 
[10] F. Sirumbal, “Numerical modeling of dam-
reservoir interaction seismic response using the hybrid 
frequency–time domain (HFTD) method,” Master of 
Science Thesis, Faculty of Civil Engineering and 
Geosciences, Delft University of Technology, Delft, 
2013. 
[11] COMSOL, “Reference Manual.” 2015. 
[12] O. C. Zienkiewicz and P. Bettes, “Fluid - 
Structure Dynamic Interaction and Wave Forces. An 
Introduction to Numerical Treatment,” Int. J. Numer. 
Methods Eng., vol. 13, pp. 1–16, 1978. 
[13] E. L. Wilson, Three-dimensional static and 
dynamic analysis of structures. Berkeley, California: 
Computers and Structures, Inc, 2002. 
[14] Y. Vela, “Efectos Hidrodinámicos en Presas de 
Arco,” Undergraduate Thesis, Civil Engineering Faculty, 
National University of Engineering, Lima, Perú, 2018. 
[15] J. Lysmer and R. L. Kuhlemeyer, “Finite 
dynamic model for infinite media,” J. Eng. Mech. Div. - 
Proc. Am. Soc. Civ. Eng., vol. 95, no. 4, pp. 859–877, Aug. 
1969. 
[16] J. Chung and G. M. Hulbert, “A time Integration 
Algorithm for Structural Dynamics with Improved 
Numerical Dissipation: The Generalized-α Method,” 
ASME J. Appl. Mech., pp. 371–375, 1993. 



20 
Y. Vela et al. 

DOI: https://doi.org/10.21754/tecnia.v32i2.1376   TECNIA Vol.32 N°2 Enero-Junio 2022 

[17] U. S. Army Corps of Engineers, “Arch dam 
design,” Department of the Army, Washington, D. C., 
Engineer Manual 1110-2–2201, May 1994. 
[18] A. K. Chopra and K. L. Fok, “Earthquake 
analysis and response of concrete arch dams,” 
Earthquake Engineering Research Center, University of 
California, Berkeley, Technical Report N° UCB/EERC-
85/07, Jul. 1985. 
[19] B. Sevim, A. C. Altunsşik, A. Bayraktar, M. 
Akköse, and Y. Calayir, “Water length and height effects 
on the earthquake behavior of arch dam-reservoir-
foundation systems,” KSCE J. Civ. Eng., vol. 15, no. 2, pp. 
295–303, 2011. 
[20] COMSOL, “Acoustic Module - User's Guide” 
2015. 
[21] Centro Peruano-Japonés de Investigaciones 
Sísmicas y Mitigación de Desastres CISMID, 
“Generación de acelerogramas sintéticos para la costa 
del Perú,” Lima, Perú, Technical report commissioned 
by SENCICO, 2013. 

[22] R. W. Clough, K.-T. Chang, H.-Q. Chen, and Y. 
Ghanaat, “Dynamic interaction effects in arch dams,” 
Earthquake Engineering Research Center, University of 
California, Berkeley, Technical Report N° UCB/EERC-
85/11, Oct. 1985. 
[23] Centro Peruano Japones de Investigaciones 
Sísmicas y Mitigación de Desastres (last accessed on 
December 2021) Centro de Observación para la 
Ingeniería Sísmica del CISMID/FIC/UNI [Online]. 
Available: http://www.cismid.uni.edu.pe/ceois/red/ 

 
 
 

 
 
 

 
 
 

 

Los artículos publicados por TECNIA pueden ser compartidos a través de la licencia Creative Commons: CC BY 4.0. 
Permisos lejos de este alcance pueden ser consultados a través del correo revistas@uni.edu.pe 

http://www.cismid.uni.edu.pe/ceois/red/
mailto:revistas@uni.edu.pe

