SciELO - Scientific Electronic Library Online

 
vol.10 número3Efecto de la época de aplicación del N y período de cosecha en la producción y calidad de frutos de fresa (Fragaria x ananassa Duch)Calidad de compost obtenido a partir de estiércol de gallina, con aplicación de microorganismos benéficos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Scientia Agropecuaria

versión impresa ISSN 2077-9917

Resumen

ROSAS-ECHEVARRIA, Cesar Wilfredo; SOLIS-BONIFACIO, Hubel  y  CUEVA, Alberto Franco Cerna-. Efficient and low-cost system for the selection of coffee beans: an application of artificial vision. Scientia Agropecuaria [online]. 2019, vol.10, n.3, pp.347-351. ISSN 2077-9917.  http://dx.doi.org/10.17268/sci.agropecu.2019.03.04.

Quality is an important factor when positioning a product in the market, so it is necessary to have an efficient selection process. Currently there are expensive equipment that carry out the selection process that is not accessible to small businesses, it is therefore mentioned that a low-cost procedure is proposed through which the coffee bean selection process can be performed, using a library Real - time image processing for quality selection based on color and size (pixels on screen). A sample of 50kg of coffee was used for manual quality selection based on the proportion of colors (green, red, brown colors), size per grain that is classified into three categories (< 1 cm2, = 1 cm2, > 1 cm2). Then the same process was carried out on the same sample by using the image processing system based on color and size (pixels per screen by rows and columns for the calculation of the area of each grain) by a belt where 3 grains passed per second. The results referring to the color-based quality did not show a significant difference α = 0.05, but with respect to the time used, the selection process through image processing lasted one hour compared to the 2 hours of the manual process, therefore the selection of the Coffee beans using the image processing system is superior to the manual selection process.

Palabras clave : coffee beans; computational vision; grain selection; low cost.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons