SciELO - Scientific Electronic Library Online

 
vol.34 número2Crecimiento corporal, composición proximal del músculo y parámetros hematológicos de juveniles de Colossoma macropomum alimentados con una dieta exclusivamente vegetal en comparación con una dieta con bajo contenido de harina de pescadoDensidad de fibras y densidad de conductos pilosos como criterios de selección para mejorar la calidad y el peso de vellones de alpacas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

Compartilhar


Revista de Investigaciones Veterinarias del Perú

versão impressa ISSN 1609-9117

Resumo

PORTOCARRERO BANDA, Abdel Alejandro et al. Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca ( Lama pacos ). Rev. investig. vet. Perú [online]. 2023, vol.34, n.2, e23130.  Epub 28-Abr-2023. ISSN 1609-9117.  http://dx.doi.org/10.15381/rivep.v34i2.23130.

The application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were characterized by optical microscopy and with the optical fibre diameter analyser (OFDA100) equipment. Fibre diameter, medulla diameter, percentage of medullation by volume, comfort factor, and objectionable fibres were considered as independent variables, and the "Soft" factor was considered as a response variable. This last variable resulting from the difference in the comfort factor and objectionable fibres served to give a logical order to the data matrix and obtain an accurate prediction model. The average values were 26.80 ± 6.95 for the fibre diameter, 14.10 ± 5.92 for the medulla diameter, 24.75 ± 13.20 µm for the percentage of medullation by volume and 71.56 ± 13.04% for the comfort factor. The machine learning multiple linear regression modelling fitted a small sample size with high precision, showing minimal errors, and optimized with the stochastic gradient descent algorithm predicted a Soft factor very close to the observed Soft factor. It is concluded that the multiple linear regression technique with the stochastic approach satisfies the prediction of the new factor called "soft" and that it represents the appropriate modelling for the prediction of fibre quality in the textile industry.

Palavras-chave : alpaca fiber; artificial intelligence; Soft factor; stochastic multiple regression.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )