SciELO - Scientific Electronic Library Online

 
vol.36 número3Estudio clínico y anatomopatológico de hemangiosarcoma cardiaco en caninos de Bogotá, ColombiaBúsqueda de Sarbecovirus en murciélagos de Yucatán, sureste de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista de Investigaciones Veterinarias del Perú

versión impresa ISSN 1609-9117

Rev. investig. vet. Perú vol.36 no.3 Lima mayo/jun. 2025  Epub 30-Jun-2025

http://dx.doi.org/10.15381/rivep.v36i3.30911 

Artículos primarios

Staple strength is associated with textile characteristics of fibre in black and brown alpacas

La resistencia a la tracción de la mecha está asociada con las características textiles de la fibra en alpacas negras y marrones

1 Escuela Profesional de Medicina Veterinaria, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú.

2 Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Perú.

3 Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA -Maranganí), Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú.

ABSTRACT

The aim of this study was to determine the correlation between the staple strength and the textile characteristics of black and brown fibres, as well as to evaluate the influence of colour, breed, location, age, and sex of alpaca on the staple strength properties. Staple strength was measured with the Staple Length & Strength instrument. Fibre characteristics were measured using an Optical-based Fibre Diameter Analyzer (OFDA 2000). Data did not show a normal distribution, as verified by the Shapiro-Wilk normality test. Spearman’s rank correlation coefficients between staple strength and fibre textile characteristics were calculated. The influence of colour, breed, location, age, and sex of alpacas on the staple strength properties were analysed separately by the Kruskal-Wallis rank sum test (α=0.05). The highest correlation was observed between peak force position and staple length (rs = 0.99), as well as significant positive correlations for staple strength with peak force (rs = 0.53), with fibre curvature (rs = 0.42), and with comfort factor (rs = 0.20). However, there were negative correlations for staple strength with spinning fineness (rs = -0.20) and standard deviation of mean fibre diameter (rs = -0.23). The fibre colour and the sex of the alpaca did not influence on the staple strength and peak force; location did not influence on the staple strength (p>0.05). However, the age category and the breed influenced the staple strength and staple length (p<0.05). Staple strength increased with age, ranging from16.75 to 20.10 N/ktex for young animals (milk teeth and 2-teeth categories) and38 N/ktex for 4-teeth animals. Suri fibre is longer and has a lower staple strength (13.4 N/ktex) compared to Huacaya fibre (29.5 N/ktex). In conclusion, the favourable negative correlations between textile and physical properties would allow a reduction in the standard deviation of MFD and spinning fineness, while improving staple strength in black and brown alpacas.

Keywords: alpaca industry; fleece colour; fibre quality; staple length; stable strength properties

RESUMEN

Este estudio tuvo como objetivo determinar la correlación entre la resistencia a la tracción de la mecha y las características textiles de la fibra negra y marrón, así como evaluar la influencia del color, raza, ubicación, edad y sexo de la alpaca sobre las propiedades de resistencia a la tracción. La resistencia de la mecha se midió con el instrumento Staple Length & Strength. Las características de la fibra se midieron utilizando un analizador óptico de diámetro de fibra (OFDA 2000). Los datos no mostraron una distribución normal según la verificación de la prueba de normalidad de Shapiro-Wilk. Se calcularon los coeficientes de correlación de rangos de Spearman entre la resistencia a la tracción y las características textiles de la fibra. La influencia del color, raza, ubicación, edad y sexo de las alpacas sobre las propiedades de resistencia de la mecha se analizó por separado mediante la prueba de suma de rangos de Kruskal-Wallis (α=0.05). La correlación más alta se observó entre la posición de fuerza máxima y la longitud de la fibra (rs = 0.99); asimismo hubo correlaciones positivas significativas para la resistencia de la mecha con la fuerza máxima (rs = 0.53), con la curvatura de la fibra (rs = 0.42) y con el factor de confort (rs = 0.20). Sin embargo, hubo correlaciones negativas para la resistencia a la tracción con la finura al hilado (rs = -0.20) y con la desviación estándar del diámetro medio de la fibra (rs = -0.23). El color de la fibra y el sexo de la alpaca no influyeron en la resistencia a la tracción de la mecha ni en la fuerza máxima; la ubicación no influyó en la resistencia de la mecha (p>0.05). Sin embargo, la categoría de edad y la raza influyeron sobre la resistencia de la mecha y la longitud (p<0.05). La resistencia a la tracción de la mecha aumentó con la edad, de 16.75 a 20.10 N/ktex para jóvenes (categorías de dientes de leche y 2 dientes) y 38 N/ktex para 4 dientes. La fibra de Suri es más larga y una tiene menor resistencia a la tracción (13.4 N/ktex) en comparación con la de Huacaya (29.5 N/ktex). En conclusión, las correlaciones negativas favorables entre las propiedades textiles y físicas permitirían una reducción de la desviación estándar de DMF y la finura al hilado, mejorando al mismo tiempo la resistencia a la tracción de la mecha en alpacas negras y marrones.

Palabras clave: industria de la alpaca; color del vellón; calidad de fibra; longitud de mecha; propiedades de resistencia a la tracción

INTRODUCTION

Andean camelids show variations in diameter along the staple length (fibre diameter profile, FDP) during the annual or seasonal fibre growth, due to nutritional availability in dry and rainy seasons, physiological conditions (Mayhua et al., 2012; Pinares and Yauri, 2019; Quispe et al., 2021; Olarte, 2022) and other factors associate to stress (Elvira and Jacob, 2004). The variability of alpaca colour remains in the high Andean regions of Peru (Oria et al., 2009; Pinares et al., 2021, 2023), that is a potential for crafts and the textile industry. Despite the above, there are few studies in Peruvian alpacas of dark colours, regarding the textile characteristics as fibre diameter and medullation (Lozano et al., 2023; Pinares et al., 2023) and very limited studies for alpaca and Ch’aku llama regarding the physical or mechanical properties as staple strength (Llactahuamani et al., 2020; Quispe-Ccasa et al., 2020).

The mean and standard deviation of fibre diameter, medullation, fibre curvature, staple length and staple strength are the main properties that influence on industrial processing and garment production (Villarroel, 1963; Wuliji et al., 2000; Lupton et al., 2006; McGregor, 2006; Simbaina y Raggi, 2019; Radzik-Rant and Wierciñska, 2021; Pinares et al., 2023). The most valued attribute of alpaca fibre is handled soft and very warm, thanks to fragmented, discontinuous and continuous medulla, within the fibres that trap air (Czaplicki, 2012; Pinares et al., 2018, 2019). Suri fleece is also valued because it is lustrous (Lupton and McColl, 2011). Those who wear alpaca garments choose them because of their thermal qualities, physical and mechanical properties (strength) of the fibre, as well as some other attributes such astheirimpermeabilityand anti-inflammability, lower fibre density or specific weight (Czaplicki, 2012). Therefore, a smaller mean fibre diameter, but with greater mean staple strength ± SD (50.16 ± 21.40 N/ktex) is required for the textile industry (Lupton et al., 2006).

Staple strength is the force required to break a staple (the maximum break force for staple per unit of average linear density), and it is measured in Newton per kilotex (Wuliji et al., 2000; McGregor, 2006; Lupton et al., 2006; Scobie et al., 2015; Llactahuamani et al., 2020; Gonzalez et al., 2020). The breaking point is associated with the fibre minimum diameter profile; therefore, the thinner section of fibre breaks faster. Staple strength could be tested empirically by stretching individual strands between the fingers and applying a tensile force until they break, but this is very subjective (Elvira and Jacob, 2004). The objective of this study was to determine the correlations between the staple strength and the textile characteristics of black and brown alpaca fibre, as well as to evaluate the influence of colour, breed, location, age and sex on the staple strength properties.

MATERIALS AND METHODS

Animal Care and Fibre Sampling

The study was carried out in Pitumarca and Maranganí districts in the province of Canchis, Cusco, Peru, in June 2022 at the XXVI Regional Agricultural Show - Pitumarca, the LXX Expo Show Agricultural -Maranganí, and the South American Camelid Research Centre (CICAS «La Raya») of the Universidad Nacional San Antonio Abad del Cusco (UNSAAC). All procedures were approved by the Ethics Committee of the National University of San Antonio Abad del Cusco (CBI-UNSACC) modified by -No. 079-2021-CU-UNSAAC, in accordance with Peruvian National Law N.° 30407 (Animal Protection and Welfare Law).

A total of 102 fibre samples (5 g) were randomly taken from mid-side (Table 1), centred over the tenth rib, midway between the back line and the belly line (Radzik-Rant et al., 2021). In both shows, coloured fibre sampling was carried out at the animal admission stage, prior to judging. Age category was assigned based on teeth, where A = DL (milk teeth 7-18 months), B = 2D (two teeth 18 months -2 years), C = 4D (four teeth 2-3 years) and D = BL (full mouth >3 years). Fibre colour was classified in black (BA), dark brown (DB) and light brown (LB), as described by Pinares et al. (2023) using the fleece colour chart of Australian Alpaca Association (2012).

Table 1. Number of alpacas sampled according to colour, breed, age and sex from Pitumarca, Maranganí and CICAS La Raya (Cusco, Peru) 

Colour: black (BA), dark brown (DB), light brown (LB); Breed: Huacaya (H), Suri (S); Age: milk teeth (DL), 2 teeth (2D), 4 teeth (4D), full mouth (BL); Sex: male (M), female (F)

Measurements of Fibre Property

Samples with >300 fibres and length >60 mm were considered for sampling. The staple strength (N/ktex), peak force (N), peak force position (mm) and staple length (mm) were analysed using the Staple Length & Strength model AJM-SL&S 07 (Interactive Wool Group, Australia), previously calibrated according to manual instructions. Scobie et al. (2015) indicated that the force needed is normalized using linear density units in grams per meter (ktex) and the amount of force needed to break a staple is measured in Newtons (N).

The fibre textile characteristics were previously measured by Pinares et al. (2023) in the same animals using the Optical-based Fibre Diameter Analyzer (OFDA 2000). For this study, the maximum diameter (µm), minimum diameter (µm), difference of fibre diameter (µm), staple length (mm), comfort factor (%), fibre curvature (°/mm), mean fibre diameter (MFD, µm), MFD standard deviation (µm), MFD coefficient of variation (%) and spinning fineness (µm) have been considered. Since staple length were measured with two instruments, Spearman’s correlation for staple length measured by OFDA 2000 and by Staple Length & Strength was high (rs = 0.80) with p<0.01. Therefore, values obtained by Staple Length & Strength was considered for this study. Fibre measurements were carried out at the Fibre Laboratory of South American Camelid Research Centre (CICAS «La Raya»), UNSAAC.

Statistical Analysis

Data were verified through the Shapiro-Wilk normality test. Due to the staple strength properties not showing a normal distribution, Spearman’s rank correlation coefficients were calculated among staple strength properties and fibre textile characteristics. Likewise, non-parametric statistics [Kruskal-Wallis rank sum test (α=0.05)] was used for median comparisons. The influence of colour, breed, location, age, and sex of animals on the staple strength properties were analysed separately by pairwise comparison using the Dunn Test (α=0.05). The statistical analyses were performed on R software, v. 4.1.1 (R Core Team, 2023).

RESULTS

Correlation between staple strength and fibre characteristics

The fibre textile characteristics were strongly correlated with the staple strength in dark-coloured alpacas (between -0.23 and 0.53). Likewise, some of these characteristics correlated with the peak force and staple length (between -0.24 and 0.36). Thus, a high correlation (rs = 0.99) was obtained between staple length and peak force position (Table 2).

Table 2. Spearman’s correlation coefficients between the staple strength properties measured by Staple Length & Strength and the fibre textile characteristics measured by OFDA 2000 in coloured Huacaya and Suri alpacas 

Significant correlations are shown with asterisk (* p<0.05; ** p<0.01; *** p<0.001)

Factors affecting the staple strength

The colour of the fleece, the location and the sex of the alpaca did not influence the staple strength (p>0.05). In the case of Huacaya alpacas, the staple strength and the peak force were higher than those of Suri alpacas. Likewise, staple strength increases with age, between 16.75 and 20.10 N/ktex for young (milk teeth and 2-teeth categories) and 38 N/ktex for 4-teeth category. However, the staple length in Huacaya was shorter compared to Suri (Table 3).

Table 3. Median for staple strength, peak force and staple length by colour, breed, location, age and sex of alpacas 

DISCUSSION

Positive correlations were found among the staple strength with the comfort factor (rs = 0.20) and with the peak force (rs = 0.53). Fibre curvature was positively correlated with staple strength (rs = 0.42) and peak force (rs = 0.36). A positive correlation (r = 0.30) was found between fibre curvature and staple strength in Huacaya and Suri alpacas by Llactahuamani et al. (2020), but a negative correlation (r = -0.26) was reported by Lupton et al. (2006) in Huacaya. The fibre curvature was negatively correlated with staple length (rs = -0.24), in agreement with -0.28 reported by Wuliji (2019).

There was a negative correlation between the staple strength with the fibre maximum diameter profile (rs = -0.21) and with the MFD standard deviation (rs = -0.23). In this regard, Quispe et al. (2021) indicate that the fibre diameter profile for annual growth (seasonal variation) is approximated by the maximum, minimum diameter along the staple and the difference in these diameters. Therefore, the positive correlation of 0.24 (p<0.05) between peak force position and difference of fibre diameters, is relevant to improve at the same time staple strength and fibre diameter profile.

The negative correlation (rs = -0.21) between staple strength and length means that the shorter the length, the greater the staple strength. This finding is corroborated with previous studies by Wuliji et al. (2000), McGregor (2006) and Lupton et al. (2006). Although this study did not find an association between MFD and staple strength (rs= -0.19), previous reports in Huacaya alpaca with high MFD ≥ 28 µm showed significant positive correlations (r>0.34; Wuliji et al., 2000; Lupton et al., 2006; McGregor, 2006). This would affect the mechanical and textile performance of the alpaca industry. No relationship was found between comfort factor and staple length similar to previous studies by Pinares et al. (2023); however, Simbaina and Raggi (2019) reported a negative correlation (rs = -0.32).

The alpaca fleece colour did not influence the staple strength and peak force of the fibre (p>0.05), similar to the results of Lupton et al. (2006) and Wuliji et al. (2000). However, Wuliji et al. (2000) found that white crias (31.7 N/ktex) had greater staple strength compared to dark and light brown ones (26.2 N/ktex), but similar to black ones (29.2 N/ktex).

In contrast, for Huacaya alpacas in USA, Lupton et al. (2006) reported a mean ± SD (50.16 ± 21.40 N/ktex), with minimums and maximums of 5 and 138 N/ktex, respectively. Likewise, in Australian alpacas, McGregor (2006) reported 81 and 68 N/ktex for Huacaya and Suri, respectively (p<0.05). These high values of staple strength in foreign-alpaca breeding are in part related to their high MFD (e»28 µm; McGregor, 2006; Wuliji et al., 2000; Lupton et al., 2006).

In Ocongate (Cusco), Llactahuamani et al. (2020) indicated that Suri alpacas had less staple strength (60.11 N/ktex) than Huacaya (81.66 N/ktex). The median differences found in our research between Huacaya (29.5 N/ktex) and Suri (13.4 N/ktex) could be related with differential distribution of internal cortical cells (Shim, 2003; Holt, 2007), as the bilateral distribution of cortical cells can differentiate the fibre curvature in Huacaya. In Suri fibres, the ortho and para cortex cells are not distributed bilaterally (Shim, 2003; Holt, 2007). On the other hand, the greater staple strength in Huacaya was attributed to its more ordered structure (higher crystallinity) in the alpaca helices making up the microfibrils, as revealed by X-ray diffraction (Hunter, 2020).

Staple length in Huacaya was shorter compared to Suri, due to the differentiated fibre growth between these breeds; thus, explaining in part by regulation of FGF5 gene, it can in turn arrest the follicle development during the anagen phase or retard its progression (Pallotti et al., 2018).

Staple strength is affected by age; thus, values of 31.8 ± 2.1 N/ktex (mean ± standard error) have been reported in adult Huacaya alpacas taken to New Zealand (Wuliji et al., 2000), similarly to the present results (38.0 ± 2.1 N/ktex) in 2-3 years old alpacas. Nevertheless, Wuliji et al. (2000) reported higher values in crias (28.4 ± 1.9 N/ ktex) than 7-18-month-old alpacas in the present study (20.10 ± 4.6 N/ktex).

From the point of view of textile processing, Elvira and Jacob (2004) indicate that values higher than 30 N/ktex are appropriate. Therefore, Huacaya alpaca fibre seems to have a good staple strength (Wuliji et al., 2000; Lupton et al., 2006; McGregor, 2006; Llactahuamani et al., 2020).

None of the staple strength properties were influenced by sex (Table 3). Males and females showed medians of 18.0 and 23.2 N/ktex, respectively (p>0.05). The results were consistent with 32.1 and 31.4 N/ktex reported by Wuliji et al. (2000) in males and females, respectively. Similarly, Llactahuamani et al. (2020) reported that sex did not influence on the staple strength. However, Lupton et al. (2006) found that males (44.5 N/ktex) produced stronger fibres than females (38.7 N/ktex). Likewise, Quispe-Ccasa et al. (2020) found higher staple strength and MFD in males (69.11 N/ktex, 27.31 µm) than in females (57.39 N/ktex, 23.63 µm) in Ch’aku llama.

CONCLUSIONS

  • Staple strength, fibre curvature and comfort increase due to the positive correlation of staple strength with peak force, with fibre curvature, and with comfort factor.

  • The colour, location and sex of the alpaca did not influence on the staple strength (p>0.05).

  • As age increases, staple strength and length increases, partly due to the larger size of fibre.

  • Although Suri has a longer staple length, it has a lower staple strength than Huacaya due to the different internal structure of the fibres between the two breeds.

Acknowledgments

Our sincere recognition to MSc. Aydee Meza for assistance with fibre measurements at the South American Camelid Research Centre La Raya, Fibre Laboratory of Universidad Nacional de San Antonio Abad del Cusco.

REFERENCES

1. Australian Alpaca Association. 2012. AAA alpaca fleece colour chart. [Internet]. Available at: https://www.oakgrove.com.au/AAA%20Alpaca%20Fleece%20Colour%20Chart.pdf. [ Links ]

2. Czaplicki Z. 2012. Properties and structure of Polish alpaca wool. Fibres & Textiles in Eastern Europe 20: 8-12. [ Links ]

3. Elvira MG, Jacob MH. 2004. Wool quality: importance of objective measurements in the commercialization and industrialization of wool. Technical folder. INTA EEA 11: 43-46. [ Links ]

4. Gonzalez EB, Sacchero DM, Easdale MH. 2020. Environmental influence on Merino sheep wool quality through the lens of seasonal variations in fibre diameter. J Arid Environments 181: 104248. doi: 10.1016/j.jaridenv.2020.104248. [ Links ]

5. Holt C. 2007. The spin on Suris and how they differ from Huacayas. Pambula Beach NSW Australia. [Internet]. Available in: https://www.researchgate.net/publication/295824536_The_spin_on_suris_And_how_they_differ_from_Huacayas. [ Links ]

6. Hunter L. 2020. Mohair, cashmere and other animal hair fibres. In: Koz³owski RM, Mackiewicz-Talarczyk M (eds). Handbook of natural fibres. Vol 1: Types, properties and factors affecting breeding and cultivation. 2nd ed. Woodhead Publishing Series in Textiles. p 279-383. [ Links ]

7. Lozano F, Pinares R, Ccopa R. 2023. Blanqueamiento de fibra con peróxido de hidrógeno y porcentaje de medulación en alpaca Huacaya negra y marrón. Rev Inv Vet Perú 34: e25486. doi: 10.15381/rivep.v34i3.25486. [ Links ]

8. Llactahuamani I, Enrique A, Cahuana E, Cucho H. 2020. Calidad de la fibra de alpacas Huacaya y Suri del plantel de reproductores de Ocongate, Cusco, Perú. Rev Inv Vet Perú 31: e17851. doi: 10.15381/rivep.v31i2.17851. [ Links ]

9. Lupton CJ, McColl A. 2011. Measurement of luster in Suri alpaca fiber. Small Rumin Res. 99: 178-186. doi: 10.1016/j.smallrumres.2011.03.045. [ Links ]

10. Lupton C, Mccoll A, Stobart R. 2006. Fiber characteristics of the Huacaya alpaca. Small Rumin Res 64: 211-224. doi: 10.1016/j.smallrumres.2005.04.023. [ Links ]

11. McGregor B. 2006. Production, attributes and relative value of alpaca fleeces in southern Australia and implications for industry development. Small Rumin Res 61: 93-111. doi: 10.1016/j.smallrumres.2005.07.001. [ Links ]

12. Mayhua P, Quispe EC, Montes M, Alfonso L. 2012. Differences in fibre diameter profile between shearing periods in white Huacaya alpacas (Vicugna pacos). In: Pérez-Cabal MA, Gutiérrez JP, Cervantes I, et al. (eds). Fibre production in South American Camelids and other fibre animals. Wageningen: Wageningen Academic Publishers. p 59-64. [ Links ]

13. Olarte CU. 2022. Efecto de la edad y estado fisiológico reproductivo en el perfil del diámetro de la fibra en alpacas Huacaya. Rev Inv Vet Perú 33: e23336. doi: 10.15381/rivep.v33i4.23336. [ Links ]

14. Oria I, Quicaño I, Quispe EC, Alfonso L. 2009. Color variability of alpaca fibre in the high Andean area of Huancavelica-Peru. Anim. Genet. Resour. Inf 45: 79-84. doi: 10.1017/S101423390999037X. [ Links ]

15. Pinares R, Meza A, Crispín N, Lozano F, Pezo D. 2023. Comparing fiber quality characteristics and staple length in Suri and Huacaya alpacas. Front Anim Sci 4: 1167113. doi: 10.3389/fanim.2023.1167113. [ Links ]

16. Pinares R, Cruz A, Daverio MS, Gutiérrez JP, Ponce de Leon FA, Wurzinger M, Di Rocco F, Gutiérrez G. 2021. Single nucleotide polymorphisms (SNPs) of the MC1R gene in black and brown alpacas. Rev Peru Biol 28: e19742. doi: 10.15381/rpb.v28i1.19742. [ Links ]

17. Pinares R, Gutiérrez G, Cruz A, Burgos A, Gutiérrez JP. 2019. Phenotypic variability of percentage of medullated fibers in Huacaya alpaca fleece. Rev Inv Vet Perú 30: 699-708. doi: 10.15381/rivep.v30i2.16098. [ Links ]

18. Pinares R, Yauri WV. 2019. Phenotypic variations of the textile characteristics of pre-dehaired fibre of vicuña. Rev Inv Vet Perú 30: 1592-1602. doi: 10.15381/rivep.v30i4.17265. [ Links ]

19. Pinares R, Gutiérrez GA, Cruz A, Morante R, Cervantes I, Burgos A, Gutiérrez JP. 2018. Heritability of individual fiber medullation in Peruvian alpacas. Small Rumin Res 165: 93-100. doi: 10.1016/j.smallrumres.2018.04.007. [ Links ]

20. Pallotti S, Pediconi D, Subramanian D, Molina MG, Antonini M, Morelli MB, Renieri C, La Terza A. 2018. Evidence of post-transcriptional readthrough regulation in FGF5 gene of alpaca. Gene 647: 121-128. doi: 10.1016/j.gene.2018.01.006. [ Links ]

21. Quispe-Ccasa H, Lloccallasi N, Choquepuma W, Huanca N, Cayo-Colca I, Saucedo UJ, Ampuero E, Cucho H. 2020. Evaluación objetiva de características de finura y resistencia en vellones de llama (Lama glama) Ch’aku. Rev Inv Vet Perú 31: e17823. doi: 10.15381/rivep.v31i2.17823. [ Links ]

22. Quispe JE, Apaza E, Olarte CU. 2021. Características físicas y perfil de diámetro de fibra de alpacas Huacaya del Centro Experimental La Raya (Puno, Perú), según edad y sexo. Rev Inv Vet Perú 32: e20004. doi: 10.15381/rivep.v32i2.20004. [ Links ]

23. R Core Team. 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. Available at: http://www.R-project.org/. [ Links ]

24. Radzik-Rant A, Wierciñska K. 2021. Analysis of the wool thickness and medullation characteristics based on sex and color in a herd of alpacas in Poland. Arch Anim Breed 64: 157-165. doi: 10.5194/aab-64-157-2021. [ Links ]

25. Radzik-Rant A, Wielechowska M, Rant W. 2021. Variation in wool characteristics across the body in a herd of alpacas kept in Poland. Animals 11: 2939. doi: 10.3390/ani11102939. [ Links ]

26. Scobie DR, Grosvenor AJ, Bray AR, Tandon SK, Meade WJ, Cooper AMB. 2015. A review of wool fibre variation across the body of sheep and the effects on wool processing. Small Rumin Res 133: 43-53. doi: 10.1016/j.smallrum-res.2015.10.025. [ Links ]

27. Shim S. 2003. Analytical techniques for differentiating Huacaya and Suri alpaca fibers. PhD Thesis. USA: Ohio State University. 108 p. [ Links ]

28. Simbaina JC, Raggi L. 2019. Lanametric determination of the alpaca fiber (Vicugna pacos) in Tucayta, province of Cañar. J Vet Sci Med 7: 1-4. [ Links ]

29. Villarroel J. 1963. Un estudio de la fibra de alpaca. An Cient Univ Nac Agraria La Molina 1: 246-274. [ Links ]

30. Wuliji T, Davis GH, Dodds KG, Turner PR, Andrews RN, Bruce GD. 2000. Production performance, repeatability and heritability estimates for live weight, fleece weight and fiber characteristics of alpacas in New Zealand. Small Rumin Res 37: 189-201. doi: 10.1016/S09214488(00)00127-9. [ Links ]

31. Wuliji T. 2019. Selection and evaluation of fiber characteristics of an extreme fine alpaca strain at Victory farm in Missouri. In: Gerken M, Renieri C, Allain D, et al. (eds). Advances in fibre production science in South American Camelids and other fibre animals. Göttingen: Universitätsverlag Göttingen. p 121-134. [ Links ]

Received: July 20, 2024; Accepted: April 28, 2025

* Corresponding author. Rubén Pinares; ruben.pinares@unsaac.edu.pe

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License