SciELO - Scientific Electronic Library Online

 
vol.31 número3Primer registro de la langosta roja Panulirus penicillatus en la costa continental de Ecuador índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista Peruana de Biología

versión On-line ISSN 1727-9933

Rev. peru biol. vol.31 no.3 Lima jul./set. 2024  Epub 14-Oct-2024

http://dx.doi.org/10.15381/rpb.v31i3.25960 

Trabajos originales

Ecological niche assessment and conservation status of colocolo pampas cat Leopardus colocola (Molina 1782)

Evaluación del nicho ecológico y estado de conservación del gato colocolo Leopardus colocola (Molina 1782)

César Chávez-Villavicencio*  1  2 
http://orcid.org/0000-0003-2185-8308

Elier Tabilo-Valdivieso1  2 
http://orcid.org/0000-0002-8217-7867

1. Universidad Católica del Norte, Universidad de La Serena, Programa de Doctorado en Biología y Ecología Aplicada. Calle Larrondo 1281, Región de Coquimbo, Chile.

2. Centro Neotropical de Entrenamiento en Humedales. Calle David Lewelling 870. Región de Coquimbo, Chile. etabilov@userena.cl

Abstract

Until 2021, Leopardus colocola was considered a species distributed across much of South America. However, recent studies have shown that it is a monotypic species, apparently restricted in its distribution to the central-northern region of Chile, distinct from other felines of the same genus. This change in its classification and distribution has sparked debate regarding its conservation status, which now requires a detailed assessment. In this study, we analyzed the species’ geographic distribution using ecological niche modeling and evaluated its conservation status according to the guidelines of the International Union for Conservation of Nature, considering the impact of mining concessions and Chile's road network. Presence records of the species were systematized, and a new ecological niche model was developed. Additionally, the Extent of Occurrence (EOO) and the Area of Occupancy (AOO) were calculated. The fragmentation and projected reduction of the niche model, along with the EOO and AOO, place the species under the Criteria B2ab (i, ii, iii), leading to its classification as “Endangered.” This study provides an updated view of the species' geographic distribution and conservation status in Chile. The results are crucial for future conservation efforts and offer a solid foundation for effective management strategies.

Keywords: Climate niche; Endemic felids; Felids conservation; Pampas’ cat; South American felids

Resumen

Hasta el año 2021, Leopardus colocola era considerada una especie distribuida en gran parte de Sudamérica. Sin embargo, estudios recientes demostraron que es una especie monotípica aparentemente restringida en su distribución al centro-norte de Chile, separándose de otras especies de felinos del mismo género. Este cambio en su clasificación y distribución conllevó a un debate sobre el estado de su conservación, la cual requiere una evaluación detallada. En este estudio, se analizó la delimitación de su distribución geográfica a través del nicho ecológico y el estado de conservación de acuerdo con los lineamientos de la Unión Internacional para la Conservación de la Naturaleza, tomando en consideración el impacto que generan las concesiones mineras y la red vial de Chile. Se sistematizaron los registros de presencia de la especie y se elaboró un nuevo modelo de nicho ecológico. Además, se calcularon el Área de Extensión de Presencia y el Área de Ocupación. La fragmentación y la disminución proyectada del modelo de nicho, las Áreas de Extensión y Ocupación ubican a la especie bajo los Criterios B2ab (i, ii, iii), lo que conduce a clasificarla en un estado de conservación de “En Peligro”. Este estudio brinda una visión actualizada de la distribución geográfica y el estado de conservación de la especie en Chile. Los resultados son fundamentales para futuras acciones de conservación y proporcionan una base sólida para estrategias de manejo efectivas.

Palabras clave: Conservación de felinos; Felinos endémicos; Felinos sudamericanos; Gato de las pampas; Nicho climático

Introduction

Delimiting the geographic distribution of a species is crucial, as it plays a essential role in conservation efforts (Lamoureux et al. 2006, Mota-Vargas & Rojas-Soto 2012, IUCN 2012). In fact, the area occupied by a species is one of the criteria used to establish its conservation status on a global scale (IUCN 2012). However, distribution boundaries are not static; they expand and contract, making them highly dynamic (Maciel-Mata et al. 2015) due to the influence of biotic and abiotic factors (Wiens & Graham 2005, Mota-Vargas & Rojas-Soto 2012, Petrosyan et al. 2019).

Since its description by Abbe Molina in 1782, Leopardus colocola (colocolo pampas cat) has undergone numerous changes in both scientific nomenclature and geographic distribution. Recent studies based on physical and genetic analyses, niche modeling, and coarse-grained occurrence data have redefined L. colocola as a monotypic species endemic to the central-northern region of Chile (Nascimento et al. 2021, Castro-Pastene et al. 2023). The endemic status is particularly significant, as endemic species face a considerable risk of extinction in the coming decades due to the drastic reduction of their distribution ranges caused by anthropogenic activities and climate change (Sekercioglu et al. 2004, Thomas et al. 2004, McKelvey 2013, Meiri et al. 2018). Given the limited available information on L. colocola, it is critical to update its distribution and conservation status (Guzmán-Marín et al. 2022).

The first attempt to establish the potential distribution of L. colocola through ecological niche modeling was conducted by Nascimento et al. (2021), using the maximum entropy method. This model was based on 18 occurrence coordinates, altitude, and 12 of the 19 bioclimatic variables available in WorldClim (Fick & Hijmans 2017), which were selected following a correlation analysis. Later, Castro-Pastene et al. (2023) provided a second approximation of the species' geographic distribution, considering L. colocola colocola as a genetic unit. They used 102 occurrence coordinates and the methodology of Franklin (2010) and McPherson et al. (2006), which employs coarse-grained occurrence data to establish species distributions. However, this study did not include predictor variables that could explain the proposed distribution. As with other methods, this approach has advantages and limitations, and its effectiveness may vary depending on the scale of the data (Gábor et al. 2022).

Another critical aspect of the species is its current "Near Threatened" conservation status, as classified by the International Union for Conservation of Nature (IUCN) (Lucherini et al. 2016) and Chile's Species Classification Regulation (Ministry of the Environment 2011). This status was established under the assumption that L. colocola was distributed across much of South America. With its recent reclassification as a monotypic species distinct from others within the genus Leopardus, its conservation status needs to be reviewed and reconsidered (Guzmán-Marín et al. 2022). The IUCN (2012) and the IUCN Standards and Petitions Committee (2022) provide guidelines for applying conservation categories and criteria. These criteria range from population size reductions (Criteria A, C, and D) to threats to a species' geographic range (Criteria A, B, and D). Furthermore, the IUCN (2012) states that the absence of high-quality data does not justify disregarding the criteria, allowing the use of estimation, inference, and projection methods when supported by evidence. In this context, current and potential threats to the species play a key role in its classification.

Before the classification of L. colocola as a monotypic species endemic to Chile, Lucherini et al. (2016) had already identified key threats, including commercial and residential development (housing and urban areas), agriculture and aquaculture (annual and non-timber perennial crops, and livestock), transportation corridors (roads and railways), and the exploitation of biological resources (hunting and trapping of terrestrial animals). However, these threats were identified before L. colocola was distinguished from other species within the genus. In the Metropolitan Region of Santiago, Guzmán-Marín et al. (2022) identified specific threats to L. colocola sensu stricto, such as the presence of domestic dogs, forest fires, vehicle collisions, domestic waste, and prolonged drought. Additionally, Castro-Pastene et al. (2023) suggested that urban and rural expansion is the primary threat to the species.

Given that information on the species’ distribution is still in its early stages, that its conservation status is under review (Nascimento et al. 2021, Guzmán-Marín et al. 2022, Castro-Pastene et al. 2023), and that there are occurrence records not yet used for distribution modeling, this study aims to: (i) systematize the occurrence records of the species to develop a new ecological niche model and predict its potential distribution, (ii) calculate the Extent of Occurrence (EOO) and Area of Occupancy (AOO), and (iii) assess threats related to mining (not considered in previous studies) and the road network to assign a conservation status category for the species according to IUCN (2022) criteria.

Material and methods

Data collection. In January 2022, a search for the presence coordinates of the species was conducted in peer-reviewed articles available in the Web of Science, Scopus, Scielo, Latindex, and Google Scholar databases. The search terms used were “Leopardus colocola” and all known synonyms of the species (Lynchailurus pajeros, Lynchailurus colocolus, Felis colocolo, Felis colocola, Lynchailurus braccatus, Leopardus pajeros, Leopardus garleppi, Leopardus braccatus, Leopardus munoai) combined with the words “distribución,” “presencia”, and their English translations. This search was complemented with the records reported in the GBIF (Global Biodiversity Information Facility 2021) and iNaturalist (iNaturalist 2023) databases. Sources lacking geographic coordinates were not considered. Coordinates accompanied by unequivocal photographic evidence of species identification were considered valid, while duplicate or questionable coordinates were excluded from the analysis. This ensured a good fit of the species’ ecological niche model (Phillips et al. 2006). Additionally, a field survey was conducted between March 2022 and February 2023, during which 18 camera traps were placed in the Tarapacá and Coquimbo regions. The camera traps were strategically placed in areas where no previous records of the species existed but were selected based on local reports of sightings. The collected data from these camera traps were reviewed every quarter (Table 1, Figure 1). After the camera traps review, the initial databases used for the study were revisited to include any new record.

Table 1 Location coordinates (from north to south) of the camera traps used in this study. 

Region Site Latitude Longitude Altitude (m)
Tarapacá Salar Huasco 1 -20.3113185 -69.0401909 4064
Tarapacá Salar Huasco 2 -20.3120449 -69.0399371 4075
Antofagasta Yuma 1 -21.0229703 -68.3816698 4173
Antofagasta Yuma 2 -21.0230918 -68.3826855 4183
Antofagasta Ollague -21.3056837 -68.2732707 3812
Antofagasta Ascotan -21.7287182 -68.2727735 4048
Antofagasta Poruña -21.8930646 -68.4941345 3473
Atacama National Park Nevado Tres Cruces 1 -27.0992905 -69.203676 3930
Atacama National Park Nevado Tres Cruces 2 -27.150976 -68.980009 4041
Atacama Maricunga -27.576955 -69.260476 4334
Atacama Punta Gorda -27.671214 -69.76746 2557
Atacama Tambería -27.9055006 -69.3956549 3272
Coquimbo Route to Pascualama 1 -29.4062917 -70.4871111 3252
Coquimbo Route to Pascualama 2 -29.4506648 -70.5700537 2647
Coquimbo El Maray -29.5458787 -71.1767085 856
Coquimbo Pangue -30.2172278 -70.646168 2100
Coquimbo Ponio River -30.6371064 -70.7918733 1684
Coquimbo Combarbalá -31.3130155 -70.9658064 1749

Figure 1 Arrangement of the camera traps used in this study (red points), located between Tarapaca and Coquimbo in the central-northern region of Chile. Coordinates are shown in Appendix 1. 

Ecological Niche Modelling. The maximum entropy method was employed using MaxEnt 3.4.3 software (Phillips et al. 2006). This software is suitable when absent data are not reliably obtained (Stryszowska et al. 2016, Galante et al. 2018). The model was developed by delimiting South America as the area of accessibility or “area M,” even though the occurrence data points were limited to Chile. This enabled exploring niche connectivity with species previously classified as L. colocola (Nascimento et al. 2021). Based on the number of occurrences (171 coordinates. Appendix 1), the feature type “threshold features” (Elith et al. 2010) and the regularization multiplier RM=1 (Morales et al. 2017, Galante et al. 2018) were used. A detailed description of the feature types and the resulting models can be found in Phillips et al. (2006) and Phillips & Dudik (2008). A total of 50 replicates were used to obtain a robust mean model (Stryszowska et al. 2016), and the type of replicate run was bootstrap (Phillips et al. 2006). The randomized test percentage was 25. The model was developed using 100% of the records to take advantage of all available occurrence data to provide the best estimate of the ecological niche of the species and to have a better visual interpretation (Phillips et al. 2006).

The predictive variables used in this study included the data from the 19 bioclimatic layers available in WorldClim (Fick & Hijmans 2017) and the elevation layer, following a similar approach to Nascimento et al. (2021). These variables were extracted from the coordinates of the occurrences of the species (Cuervo-Robayo et al. 2017), which allowed for characterizing the climatic or ecological niche (Mota-Vargas et al. 2019). The variables that contributed the most to the spatial-environmental variation of the species were selected using a variable clustering analysis, which helped to eliminate strongly correlated variables. This variable selection was performed with the ClustOfVar package (Chavent et al. 2012) run from R (R Core Team 2023). This analysis reduced the 19 variables to only eight: Bio1 = Annual Mean Temperature, Bio 2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)), Bio 3 = Isothermality (BIO2/BIO7) (×100), Bio 4 = Temperature Seasonality (standard deviation ×100), Bio 10 = Mean Temperature of Warmest Quarter, Bio 15 = Precipitation Seasonality (Coefficient of Variation), Bio16 = Precipitation of Wettest Quarter. The resulting logistic model provided a predicted spatial probability of occurrence ranging from 0 (low) to 1 (high). The reliability of the model was evaluated using the area Under the Curve (AUC) of the receiver operating characteristic (ROC) curve (Fielding & Bell 1997). The AUC ranges from 0.5 (low discrimination) to 1 (perfect discrimination), and the general rule states that AUC values above 0.75 are considered informative (Eskildsen et al. 2013). The threshold of the ecological niche model was established with the value that allowed the incorporation of all the coordinates of the presence of the species to deal with the underestimation (Loiselle et al. 2003).

The EOO is “the area contained within the shortest continuous imaginary boundary which can be drawn to encompass all the known, inferred or projected sites of present occurrence of a taxon, excluding cases of vagrancy” (IUCN Standards and Petitions Committee 2022). It was calculated using the alpha hull method (a generalization of a convex hull), which describes the distribution area’s external shape by dividing it into several differentiated polygons (IUCN Standards and Petitions Committee 2022). Using the QGIS 3.28 software, a Delaunay triangulation was constructed using the species’ occurrence coordinates. Then, the mean length of all lines was calculated. Next, lines with lengths greater than a multiple (alpha) of the mean line length were deleted (where the product of alpha and the mean line length represents a “discontinuity distance”). The alpha value was two, as the IUCN Standards and Petitions Committee (2022) recommends. This process eliminated the lines connecting points that were relatively distant from each other. Finally, the EOO was calculated by summing the remaining triangles’ areas. This alpha hull method allows for assessing reductions in continuous declines of the EOO, reducing biases resulting from the spatial arrangement of habitat (Burgman & Fox 2003).

The AOO is a scaled metric that represents the area of suitable habitat currently occupied by the taxon. It was calculated through the occupancy of 2x2 km grids (4 km2) (IUCN Standards and Petitions Committee 2022). This ensured that the AOO estimation corresponded to the implicit scale of IUCN thresholds (IUCN Standards and Petitions Committee 2022). The formula is AOO = (number of occupied cells) x (cell area).

Threats and conservation status. To assess the impact of mining activity, the resulting area was calculated by subtracting the mining concessions layer of Chile (codes 1932 and 1983) from the niche model, EOO, and AOO. These data were obtained from the National Geology and Mining Service (2022). Furthermore, the road network layer of Chile (National Congress Library of Chile 2018) was overlaid with the niche model, EOO, and AOO to assess the potential for roadkill incidents. Finally, following the criteria set by the IUCN Standards and Petitions Committee (2022), a new conservation status was proposed for the species.

Results

The camera traps used in this study did not record the occurrence of the species. From the reviewed databases, 171 occurrence coordinates were collected (Appendix 1). The ecological niche model of L. colocola showed an area of 157310 km2 (Table 2, Figure 2). The mean training AUC for the replicate runs was 0.991 (SD = 0.00), indicating good performance. The variables that best explained the model were Bio 15 with a contribution of 41.9% (Figure 3), Bio 3 with 26.2%, and Bio 10 with 17.1%. The cut-off threshold, including all the presence coordinates, was determined using the Maximum Training Sensitivity plus Specificity Logistic Threshold, corresponding to 9.73%. The model also predicted ecological niche presence along the central-northern coast of Peru, the northern cordillera of Chile, part of Bolivia, and Argentina, Overlapping with the climatic niche models of Leopardus garleppi proposed by Nascimento et al. (2021) (Figure 2). The EOO of the species was estimated to be 46985.5 km2 (Table 2. Figure 2), while the AOO was calculated to be 630.8 km2 (Table 2).

Table 2 Areas of the ecological niche model, area of Extent of Presence (EOO), and area of Occupation (AOO), resulting after subtracting mining concessions. Additionally, the length of the road network is shown. 

Parameter Area (km2) Mining concessions (km2) Resulting area (km2) Road network (km)
Niche model 157310.0 54100.6 103209.4 33213.3
EOO 46985.5 22387.1 24598.4 9765.4
AOO 630.8 274.3 356.5 176.0

Figure 2 (a) Niche model of Leopardus colocola compared to the distribution of other species in the “pampas cat” group according to Nascimento et al. (2022). (b) Niche model of Leopardus colocola, occurrence points, and distribution proposal outlined by Castro-Pastene et al. (2023), in shaded polygon. (c) Extent of Occurrence (EOO) in blue polygon within the context of the niche model of Leopardus colocola. (b) and (c) show the Laja (blue line) and BíoBío (green line) rivers. 

Figure 3 Predicted probability variation and mean response of the 50 replicate Maxent runs (in red), with mean values and +/- one standard deviation (in blue), depicting Bio15 (Precipitation Seasonality - Coefficient of Variation). 

Regarding the threat posed by the road network, it has a total length of 37927.7 km within the niche model, with a densely intertwined spatial configuration mainly concentrated in the western region, leading to pronounced landscape fragmentation (Table 2, Figure 4). The mining concessions exhibited a higher concentration in the central-northern region of the niche model, covering a total area of 54100.6 km2. Exploiting these concessions implies severe fragmentation and a reduction of the niche model of 27.1%. The impact on the EOO involved severe fragmentation and a reduction of 47.7% and 43.5% on the AOO (Table 2. Figure 4). The EOO encompassed 9765.4 km of roads, with 176 km crossing the AOO.

Figure 4 (a) Road network and roadkill points, (b) mining concessions, and (c) road network and mining concessions in the context of the Leopardus colocola Extent of Occurrence (EOO). 

Discussion

Ecological niche model. The findings of this study put forth a novel ecological niche model proposal, along with the expected impact of mining activities and road networks. Compared to the Nascimento et al. (2021) model, the increased number of used coordinates enabled a more robust and expanded niche prediction (Figure 1a). The development of our model coincided with that presented by Nascimento et al. (2021) on five predictive variables (Bio2, Bio3, Bio10, Bio15, and Bio17), despite using different variable selection methods. Although Nascimento et al. (2021) did not specify which variable explained their model, the ecological niche, and the probability of the occurrence of L. colocola, in this study they were primarily explained positively by the seasonality of precipitation (Bio15), followed by variations in temperature (Bio3 and Bio10). The positive relationship of species occurrence with Bio15 (Fig. 2) contrasts with the relationship found by Tirelli et al. (2021) for Leopardus munoai (the sister species of L. colocola); that is, L. munoai responded negatively to Bio15. However, this alignment with the growth stages of trees in forest habitats and their maintenance (Brienen & Zuidema 2005) suggests that the species not only inhabits desert environments but also forested ones (Castro-Pastene et al. 2023). Nonetheless, it does not support Castro-Pastene et al. (2023) hypothesis that the species avoids the humid forests around the locality of Concepción.

A limitation in potential distribution studies or ecological niche modeling is that they do not consider geographic barriers in their predictions (Cuervo et al. 2023). According to the occurrence records and the findings of this study (Figure 2), it appears that the Laja River, in together with the BíoBío River, constitutes a geographical barrier, effectively demarcating the southern limit of the species distribution as proposed by Castro-Pastene et al. (2023), even though the resulting niche model minimally exceeds this limit. Indeed, we agree with Castro-Pastene et al. (2023) that it is necessary to increase sampling efforts, particularly in areas with gaps in records, to enhance our understanding of the distribution of this species.

Conservation Status. The Criteria A, C, and D of the IUCN Red List refer to the total number of mature individuals of the assessed taxon (IUCN 2012). However, in the case of L. colocola, determining the total number of individuals is challenging due to its elusive nature (Kinnaird et al. 2003, Linkie et al. 2006). Faced with this difficulty, the Criteria B of the IUCN Red List emerges, which relates to the size of the geographic distribution area and the threats that may lead to its reduction, fragmentation, or continuous observed, inferred, or projected decline (IUCN 2012). In a more precise approach, the application of Criterion B2 by the IUCN primarily focuses on the size of the Area of Occupancy (AOO) (IUCN Standards and Petitions Committee 2022). According to our results, the AOO measured at 630.8 Km2 (Table 2) falls below one of the thresholds of Criteria B2 (AOO < 2000 km2). However, the projection of mining concessions could reduce the AOO by 56.5% as implemented (Table 2). This scenario is critical because mining production in Chile is expected to increase by 20.7% by 2030 (Cifuentes & Garay 2019). The high fragmentation of the AOO is evident and could be aggravated if we consider the 176 km of roads that currently cross it (Figure 4a. Table 2). It is important to note that one of the major threats to the species is mortality due to roadkill incidents (Guzmán-Marín et al. 2022). In fact, 12 records from this study (7%) corresponded to roadkill incidents. As a result of the fragmentation and the projected reduction of the EOO from 46985.5 km2 to 24598.4 km2 (Table 2, Figure 4c), as well as the decrease in AOO from 630.8 km2 to 356.5 km2, the species meets the criteria specified in B2ab (i, ii, iii). Consequently, it is classified as ‘Endangered’ in terms of its conservation status.

Given the proposed conservation status faced by the species, it is crucial to quantify its threats, such as dog attacks, roadkill, hunting, lack of wildlife crossings, absence of biological corridors in the face of mining development, etc. These quantifications will provide essential insights for developing a conservation plan following the Open Standards for the Practice of Conservation (Conservation Measures Partnerships 2020). This plan must be prioritized, including habitat protection, particularly regarding mining and road activities; establishing biological corridors with a medium-term vision to ensure connectivity between fragments; and emphasizing wildlife crossings to mitigate roadkill incidents. While human-wildlife conflicts involving the species remain unknown, evaluating and addressing them if they arise (coexistence) is crucial. Continued studies on the ecology and distribution of the species will also provide valuable information for making informed decisions for its protection and management. Finally, no conservation plan will be successful without working on education and awareness efforts to raise public consciousness. These general recommendations will contribute to conserving an endemic species part of Chile’s natural heritage.

Supplementary material

  • Supplementary material 1. Gráfico de los Componentes Principales de las Variables

  • Supplementary material 2. Dendrograma del Clúster

  • Supplementary material 3. Asignación de clústeres para cada variable

  • Supplementary material 4. Cargas Cuadráticas y Correlaciones de Variables Dentro de Cada Clúster

  • Supplementary material 5. Varianzas Explicadas por los Componentes Principales para Cada Clúster

  • Supplementary material 6. Puntuaciones Sintéticas para las seis de Primeras Observaciones en Cada Clúster de 170

Agradecimientos / Acknowledgments:

To the Pampas Cat Working Group for their efforts and advice in bringing this project to realization. To the Small Wild Cat Conservation Foundation for partially funding the project. To Fabio Do Nascimento for providing the colocolo presence coordinates used in his niche model and Carlos Castro Pastene for providing the colocolo presence coordinates used in his proposed distribution of the species and for improving this manuscript with his comments. To those who selflessly upload valid information on social networks, mainly iNaturalist and GBIF. To Álvaro García and Cindy Hurtado for supervising and advising the execution of this project.

Literature cited

Beltrami E, Gálvez N, Osorio C, Kelly MJ, Morales-Moraga D, Bonacic C. 2021. Ravines as conservation strongholds for small wildcats under pressure from free-ranging dogs and cats in Mediterranean landscapes of Chile. Studies on Neotropical Fauna and Environment 58:138-154. https://doi.org/10.1080/01650521.2021.1933691 [ Links ]

Brienen RJ, Zuidema PA. 2005. Relating Tree Growth to Rainfall in Bolivian Rain Forests: A Test for Six Species Using Tree Ring Analysis. Oecologia 146:1-12. https://doi.org/10.1007/s00442-005-0160-y [ Links ]

Burgman MA, Fox JC. 2003. Bias in Species Range Estimates from Minimum Convex Polygons: Implications for Conservation and Options for Improved Planning. Animal Conservation 6:19-28. https://doi.org/10.1017/S1367943003003044 [ Links ]

Castro-Pastene C, Gonzalez C, Carrasco H, Soto-Gamboa M. 2021. Records of Different Habitats Used by the Colo-Colo (Leopardus colocola colocola) Molina 1782, in Central Chile. Gayana 85:84-89. https://doi.org/10.4067/S0717-65382021000100084 [ Links ]

Castro-Pastene CA, Villalobos Aguirre RA, Lagos Silva N, Sepúlveda Cabrera CF, Cross Ossa D, Valenzuela-Aedo N, Segura Silva BT, Iriarte Walton A, Hernández Muños FA, Soto-Gamboa MR. 2023. Assessment of the Current Distribution of the Colocolo Cat Leopardus colocola, (molina 1782) in Chile and its Implications in the Taxonomy of the Species. Mastozoología Neotropical 30(1):e0853. https://doi.org/10.31687/saremMN.23.30.1.04.e0853 [ Links ]

Chavent M, Kuentz-Simonet V, Liquet B, Saracco J. 2012. ClustOfVar: An R Package for the Clustering of Variables. Journal of Statistical Software 50(13):1-16. https://doi.org/10.18637/jss.v050.i13 [ Links ]

Chávez-Villavicencio C, Tabilo-Valdivieso E. 2022. ¿Servirán a futuro las redes sociales como herramienta para la investigación en ecología? el caso de la presencia de Leopardus colocola (felidae, carnívora) en Chile. The Biologist 20:141-153. https://doi.org/10.24039/rtb20222011221 [ Links ]

Conservation Measures Partnerships. 2020. Open Standards for the Practice of Conservation. Version 4.0. Accessed 2023 Feb 11. http://conservationstandards.org/wp-content/uploads/sites/3/2020/12/CMP-Open-Standards-for-the-Practice-of-Conservation-v4.0-English.pdfLinks ]

Cuervo-Robayo AP, Escobar LE, Osorio-Olivera LA, Nori J, Varela S, Martínez-Meyer E, Velásquez-Tibatá J, Rodríguez-Soto C, Munguía M, Castañeda-Álvarez NP, Lira-Noriega L, Soley-Guardia M, Serra-Díaz JM, Townsend Peterson A. 2017. Introducción a los Análisis Espaciales con Énfasis en Modelos de Nicho Ecológico. Biodiversity Informatics 12:45-57. https://journals.ku.edu/jbi/article/download/6507/6016/12578Links ]

Cuervo PF, Artigas J, Lorenzo-Morales MD, Bargues P, Mas-Coma S. 2023. Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Tropical Medicine and Infectious Disease 8:187. https://doi.org/10.3390/tropicalmed8040187 [ Links ]

Elith J, Kearney M, Phillips SJ. 2010. The Art of Modelling Range-Shifting Species. Methods in Ecology and Evolution 1:330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x [ Links ]

Eskildsen AP, Le Roux C, Heikkine RK, Hoye TT, Kissling WD, Poyry J, Wisz MS, Luoto M. 2013. Testing Species Distribution Models across Space and Time: High Latitude Butterflies and Recent Warming. Global Ecology and Biogeography 22:1293-1303. https://doi.org/10.1111/geb.12078 [ Links ]

Espinosa M, Cepeda-Mercado AA, Louit C, Meléndez M, González-Maya JF. 2014. Pampas cat Leopardus colocolo in the Atacama Desert: first records from Llanos de Challe National Park, Chile. Boletín del Museo Nacional de Historia Natural, Chile, 63: 111-118. https://publicaciones.mnhn.gob.cl/668/w3-article-70532.html Links ]

Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology 37(12):4302-4315. https://doi.org/10.1002/joc.5086 [ Links ]

Fielding AH, Bell JF. 1997. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environmental Conservation 24:38-49. https://doi.org/10.1017/S0376892997000088 [ Links ]

Franklin J. 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press. Cambridge. 324 pp. https://doi.org/10.1017/CBO9780511810602 [ Links ]

Gábor L, Jetz W, Lu M, Rocchini D, Cord A, Malavasi M, Zarzo-Arias A, Barták V, Moudrý V. 2022. Positional Errors in Species Distribution Modelling are not Overcome by the Coarser Grains of Analysis. Methods in Ecology and Evolution 13:2289-2302. https://doi.org/10.1111/2041-210X.13956 [ Links ]

Galante PJ, Alade B, Muscarella R, Jansa SA, Goodman SM, Anderson RP. 2018. The Challenge of Modeling Niches and Distributions for Data-Poor Species: A Comprehensive Approach to Model Complexity. Ecography 41:726-736. https://doi.org/10.1111/ecog.02909 [ Links ]

Global Biodiversity Information Facility. 2023. GBIF.org Occurrence Leopardu colocolo. Accessed 2023 Mar 7. https://www.gbif.org/es/species/2434919Links ]

Guzmán-Marín BC, Hernández-Hernández JC, Olmos de Aguilera NS, Muñoz Peña PA, Kaiser M. 2022. Felino Pequeño, Ciudad Grande: Leopardus colocola (carnivora: felidae) en la Región Metropolitana de Santiago de Chile y Amenazas para su Conservación. Boletín del Museo Nacional de Historia Natural, Chile 71(1):13-21. https://doi.org/10.54830/bmnhn.v71.n1.2022.210 [ Links ]

iNaturalist. 2023. Leopardus colocola. Accessed 2023 Mar 7. https://www.inaturalist.org/observations?taxon_id=926056Links ]

IUCN Standards and Petitions Committee. 2022. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. Accessed 2022 Dic 12. https://www.iucnredlist.org/documents/RedListGuidelines.pdfLinks ]

Kinnaird MF, Sanderson EW, OBrien TG, Wibisono HT, Woolmer G. 2003. Deforestation Trends in a Tropical Landscape and Implications for Endangered Large Mammals. Conservation Biology 17:245-257. https://www.jstor.org/stable/3095291Links ]

Lamoureux JF, Morrison JC, Ricketts TH, Olson DM, Denerstein E, McKhight MW, Shugart HH. 2006. Global Test of Biodiversity Concordance and the Importance of Endemism. Nature 440:214-221. https://doi.org/10.1038/nature04291 [ Links ]

Linkie M, Chapron G, Martyr DJ, Holden J, Leader-Williams N. 2006. Assessing the Viability of Tiger Subpopulations in a Fragmented Landscape. Journal of Applied Ecology 43:576-586. https://doi.org/10.1111/j.1365-2664.2006.01153.x [ Links ]

Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH. 2003. Avoiding Pitfalls of Using Species Distribution Models in Conservation Planning. Conservation Biology 17:1591-1600. https://doi.org/10.1111/j.1523-1739.2003.00233.x [ Links ]

Lucherini M, Eizirik E, de Oliveira T, Pereira J, Williams RSR. 2016. Leopardus colocolo. The IUCN Red List of Threatened Species 2016: e.T15309A97204446. Accessed 2023 Jan 5. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T15309A97204446.en [ Links ]

Maciel-Mata CA, Manríquez-Morán N, Octavio-Aguilar P, Sánchez-Rojas G. 2015. El Área de Distribución de las Especies: Revisión del Concepto. Acta Universitaria 25(2):3-19. https://doi.org/10.15174/au.2015.690 [ Links ]

McKelvey KS, Perry RW, Mills LS. 2013. The Effects of Climate Change on Mammals. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. https://www.fs.usda.gov/ccrc/topics/wildlife/mammals. [ Links ]

Meiri S, Bauer AM, Allison M, Castro-Herrera F, Chirio L, Colli G, Roll U. 2018. Extinct, obscure or imaginary: The lizard species with the smallest ranges. Diversity and Distributions 24:262-273. doi: https://doi.org/10.1111/ddi.12678 [ Links ]

Ministry of Environment. 2011. Inventario Nacional de Especies de Chile: Leopardus colocolo (Molina, 1872). Accessed 2023 Feb 18. http://especies.mma.gob.cl/CNMWeb/Web/WebCiudadana/ficha_indepen.aspx?EspecieId=11&Version=1Links ]

Morales NS, Fernández IC, Baca-Gonzáles V. 2017. MaxEnt’s Parameter Configuration and Small Samples: Are We Paying Attention to Recommendations? A Systematic Review. PeerJ 5:e3093. https://doi.org/10.7717/peerj.3093 [ Links ]

Mota-Vargas C, Encarnación-Luévano A, Ortega-Andrade M, Prieto-Torres E, Peña-Peniche A, Rojas-Soto OR. 2019. Una Breve Introducción a los Modelos de Nicho Ecológico. In: Moreno CE, editor. La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos para su Estudio. Ciudad de México: Universidad Autónoma del Estado de Hidalgo. Pp. 39-63. [ Links ]

Mota-Vargas C, Rojas-Soto O. 2012. The Importance of Defining the Geographic Distribution of Species for Conservation: The Case of the Bearded Wood-Partridge. Journal of Nature Conservation 20:10-17. https://doi.org/10.1016/j.jnc.2011.07.002 [ Links ]

McPherson JM, Jets W, Rogers DJ. 2006. Using Coarse-Grained Occurrence Data to Predict Species Distributions at Finer Spatial Resolution - Possibilities and Limitations. Ecological Modelling 192:499-522. https://doi.org/10.1016/j.ecolmodel.2005.08.007 [ Links ]

Nascimento FO, Cheng J, Feijo A. 2021. Taxonomic Revision of the Pampas Cat Leopardus colocola Complex (Carnivora: Felidae): An Integrative Approach. Zoological Journal of the Linnean Society 191(2):575-611. https://doi.org/10.1093/zoolinnean/zlaa043 [ Links ]

National Congress Library of Chile. 2018. Mapas Vectoriales. Mapoteca. Accessed 2022 Sep 18. https://www.bcn.cl/siit/mapas_vectoriales/index_htmlLinks ]

National Geology and Mining Service. 2022. Catastro de Concesiones Mineras. Accessed 2023 Jan 5. https://catastro.sernageomin.cl/Links ]

Petrosyan V, Osipov F, Bobrov V, et al. 2019. Analysis of Geographical Distribution of the Parthenogenetic Rock Lizard Darevskia armeniaca and its Parental Species (D. mixta, D. valentini) Based on Ecological Modelling. Salamandra 55(3):173-190. Accessed 2022 Aug 21. https://www.salamandra-journal.com/index.php/home/contents/2019-vol-55/1946-petrosyan-v-f-osipov-v-bobrov-n-dergunova-e-nazarenko-a-omelchenko-f-danielyan-m-arakelyan/fileLinks ]

Phillips SJ, Dudík M. 2008. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 31(2):161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x [ Links ]

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 [ Links ]

R Core Team. 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.orgLinks ]

Sekercioglu CH, Daily GC, Ehrlich PR. 2004. Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences 101(52):18042-18047. https://doi.org/10.1073/pnas.0408049101 [ Links ]

Stryszowska KM, Johnson G, Mendoza LR, Langen TA. 2016. Species Distribution Modeling of the Threatened Blanding’s Turtle’s (Emydoidea blandingii) Range Edge as a Tool for Conservation Planning. Journal of Herpetology50:366-373. https://doi.org/10.1670/15-089 [ Links ]

Tirelli FP, Trigo TC, Queirolo D, Kasper CB, Bou N, Peters F, et al. 2021. High Extinction Risk and Limited Habitat Connectivity of Muñoa’s Pampas Cat, an Endemic Felid of the Uruguayan Savanna Ecoregion. Journal for Nature Conservation 62:126009. https://doi.org/10.1016/j.jnc.2021.126009 [ Links ]

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE. 2004. Extinction Risk from Climate Change. Nature 427(6970):145-148. https://doi.org/10.1038/nature02121. [ Links ]

UICN. 2012. Categorías y Criterios de la Lista Roja de la UICN: Versión 3.1. Segunda edición. Gland, Suiza y Cambridge. Accessed 2023 Jan 25. https://clasificacionespecies.mma.gob.cl/wp-content/uploads/2019/10/CriteriosIUCNredlistcatspanish_2daEdicion.pdfLinks ]

Wiens JJ, Graham CH. 2005. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics 36:519-539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 [ Links ]

Fuentes de financiamiento / Funding: This project was partially funded by the Small Wild Cat Conservation Foundation

Aspectos éticos / legales; Ethics / legals: The development of this study did not involve the manipulation of animals and complied with all the ethical and legal norms established in Chile

Citación: Chávez-Villavicencio C, Tabilo-Valdivieso E. 2024. Ecological niche assessment and conservation status of colocolo pampas cat Leopardus colocola (Molina 1782). Revista peruana de biología 31(3): e25960 001 - 016 (octubre 2024). doi: https://dx.doi.org/10.15381/rpb.v31i3.25960

Editor: Dennisse Ruelas

Appendix 1 Systematization of Leopardus colocola occurrence coordinates from different sources of information used in this study. Abbreviations: N.P. = National Park; N.R. = National Reserve; N.S. = Nature Sanctuary. 

Region Site Latitude Longitude Source
Antofagasta Near to Paposo 25° 1' 49" S 70° 28' 8" W Castro-Pastene et al. (2023)
Atacama Los Leones Stream. Caldera 26° 59' 52" S 70° 42' 38" W Castro-Pastene et al. (2023
Atacama N.P. Llanos del Challe, Aguada Los Pajaritos 28° 2' 28" S 71° 4' 1" W Espinoza et al. (2014)
Atacama N.P. Llanos de Challe, La Higuera Stream 28° 2' 35" S 71° 6' 53" W Espinoza et al. (2014)
Atacama N.P. Llanos del Challe 28° 9' 48" S 71° 3' 25" W Castro-Pastene et al. (2023)
Atacama N.P. Llanos de Challe 28° 10' 4" S 71° 7' 18" W Espinoza et al. (2014)
Atacama N.P. Llanos de Challe, Aguada Rascamoños 28° 11' 36" S 71° 7' 46" W Espinoza et al. (2014)
Atacama N.P. Llanos del Challe 28° 12' 2" S 71° 4' 11" W Castro-Pastene et al. (2023)
Atacama N.P. Llanos de Challe, Quebrada Hualtatas 28° 12' 32" S 71° 7' 16" W Espinoza et al. (2014)
Atacama N.P. Llanos de Challe: Las Hualtatas 28° 12' 37" S 71° 8' 56" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Atacama N.P. Llanos de Challe, Aguada Fundición 28° 14' 9" S 70° 59' 37" W Espinoza et al. (2014)
Atacama Tres Playitas 28° 24' 4" S 71° 11' 10" W Fauna impactada en las carreteras y caminos de Chile: Fermín Alfaro (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Atacama Km 21 C-46, Bodeguilla, Freirina 28° 31' 28" S 70° 59' 40" W Vicky Sandoval (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Atacama Cuesta Pajonales 29° 9' 0" S 71° 2' 0" W Global Biodiversity Information Facility (2023)
Atacama Cuesta Pajonales 29° 9' 0" S 71° 3' 0" W Global Biodiversity Information Facility (2023)
Coquimbo Punta de Choros 29° 12' 36" S 71° 28' 44" W Castro-Pastene et al. (2023)
Coquimbo Punta de Choros 29° 12' 37" S 71° 28' 44" W Castro-Pastene et al. (2021)
Coquimbo Los Choros, Salto del Molle 29° 16' 53" S 71° 9' 14" W Castro-Pastene et al. (2023)
Coquimbo Los Choros, Los Choros Stream 29° 18' 18" S 71° 12' 55" W Castro-Pastene et al. (2023)
Coquimbo Punta Colorada - El Pleito 29° 18' 44" S 71° 0' 52" W Castro-Pastene et al. (2023)
Coquimbo El Trapiche, Mine 29° 24' 22" S 71° 7' 14" W Castro-Pastene et al. (2023)
Coquimbo Batuco 29° 26' 6" S 70° 50' 55" W Castro-Pastene et al. (2023)
Coquimbo Seca Stream, La Higuera 29° 26' 9" S 71° 10' 8" W iNaturalist (2023)
Coquimbo Seca Stream, La Higuera 29° 28' 10" S 71° 7' 21" W iNaturalist (2023)
Coquimbo Maray 29° 34' 33" S 71° 9' 0" W Castro-Pastene et al. (2023)
Coquimbo Maray 29° 35' 28" S 71° 8' 43" W Castro-Pastene et al. (2023)
Coquimbo Santa Gracia Forest 29° 43' 39" S 71° 6' 25" W Castro-Pastene et al. (2023)
Coquimbo Condoriaco 29° 44' 48.016" S 70° 50' 59" W Castro-Pastene et al. (2023)
Coquimbo San Antonio Stream 29° 45' 49" S 70° 59' 57" W Castro-Pastene et al. (2023)
Coquimbo La Florida 29° 54' 42" S 71° 11' 57" W iNaturalist (2023)
Coquimbo Marquesa (Elqui) 29° 57' 0" S 71° 0' 0" W Global Biodiversity Information Facility (2023)
Coquimbo Marquesa (Elqui) 29° 57' 56" S 70° 58' 22" W In Nascimento et al. (2021)
Coquimbo Talca 30° 0' 0" S 71° 3' 0" W Global Biodiversity Information Facility (2023)
Coquimbo Totoralillo 30° 4' 22" S 71° 21' 49" W Fauna impactada en las carreteras y caminos de Chile (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Las Tacas 30° 6' 37" S 71° 21' 50" W Gestión Natural Consultores (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo El Tangue 30° 20' 45" S 71° 31' 46" W Castro-Pastene et al. (2023)
Coquimbo El Tangue 30° 22' 10" S 71° 31' 55" W Castro-Pastene et al. (2023)
Coquimbo El Tangue 30° 22' 26" S 71° 30' 58" W Castro-Pastene et al. (2023)
Coquimbo El Tangue 30° 23' 9" S 71° 30' 26" W Castro-Pastene et al. (2023)
Coquimbo El Tangue 30° 23' 10" S 71° 31' 15" W Castro-Pastene et al. (2023)
Coquimbo Ovalle 30° 32' 17" S 71° 9' 40" W Fauna impactada en las carreteras y caminos de Chile: Dario Aguilera (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo N.P. Fray Jorge 30° 40' 29" S 71° 45' 5" W Castro-Pastene et al. (2023)
Coquimbo El Palomo 30° 43' 55" S 70° 36' 20" W Castro-Pastene et al. (2023)
Coquimbo El Palomo - Los Laureles 30° 44' 6" S 70° 36' 6" W Castro-Pastene et al. (2023)
Coquimbo Panguesillo. Sasso River 30° 46' 46" S 70° 33' 51" W Castro-Pastene et al. (2023)
Coquimbo San Miguel 30° 48' 31" S 70° 37' 37" W Castro-Pastene et al. (2023)
Coquimbo Monte Patria. El Tome 30° 48' 15" S 70° 58' 15" W El Ovallino (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Amolanas 30° 52' 37" S 71° 36' 18" W Castro-Pastene et al. (2023)
Coquimbo Las Mollacas, Chañaral de Carén 30° 53' 55" S 70° 43' 38" W Castro-Pastene et al. (2023)
Coquimbo Amolanas Farm, Agua El Maray 31° 10' 53" S 71° 33' 52" W Castro-Pastene et al. (2023)
Coquimbo Amolana Portezuelo Durazno 31° 11' 32" S 71° 33' 8" W Castro-Pastene et al. (2023)
Coquimbo Amolanas 31° 12' 31" S 71° 37' 22" W Castro-Pastene et al. (2023)
Coquimbo Quelón Alto 31° 21' 44" S 71° 10' 5" W Castro-Pastene et al. (2023)
Coquimbo Quelón alto 31° 22' 18" S 71° 10' 0" W Castro-Pastene et al. (2023)
Coquimbo Alcaparrosa 31° 23' 8" S 71° 1' 7" W Castro-Pastene et al. (2023)
Coquimbo Cuesta El Espino 31° 23' 36" S 71° 5' 49" W Castro-Pastene et al. (2023)
Coquimbo Cuesta El Espino 31° 24' 37" S 71° 6' 13" W Castro-Pastene et al. (2023)
Coquimbo Las Majadas 31° 25' 28" S 71° 16' 29" W Castro-Pastene et al. (2023)
Coquimbo Auco 31° 27' 20" S 71° 5' 35" W Castro-Pastene et al. (2023)
Coquimbo Cercano a la N.R. Las Chinchillas 31° 29' 48" S 71° 6' 54" W Fauna impactada en las carreteras y caminos de Chile: Ian Araya (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo N.R. Las Chinchillas 31° 30' 36" S 71° 7' 15" W Bóris Saavedra (com. pers)
Coquimbo N.R. Las Chinchillas 31° 31' 39" S 71° 4' 34" W Castro-Pastene et al. (2023)
Coquimbo El Bato Dam 31° 35' 27" S 70° 52' 41" W Castro-Pastene et al. (2023)
Coquimbo Fundo El Manque, Chellepín 31° 49' 17" S 70° 44' 35" W Castro-Pastene et al. (2023)
Coquimbo Agua de Rincón Seco, Llimpo 31° 49' 51" S 70° 48' 53" W Castro-Pastene et al. (2023)
Coquimbo Los Vilos 31° 51' 1" S 71° 28' 34" W iNaturalist (2023)
Coquimbo Pupío. Los Vilos 31° 52' 4" S 71° 23' 8" W Illanes y Asociados (EIA Minera Los Pelambres) (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Conchalí Lagoon, Los Vilos 31° 52' 31" S 71° 29' 39" W Fauna impactada en las carreteras y caminos de Chile (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Túneles Caimanes. Illapel 31° 53' 52" S 71° 9' 8" W Centro Veterinario Illapel (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Corrales Dam 31° 54' 33" S 70° 54' 40" W Carlos Santibañez (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo El Rincón, Los Caimanes 31° 54' 49" S 71° 5' 38" W Castro-Pastene et al. (2023)
Coquimbo Agua el Palqui, Chellepín 31° 55' 15" S 70° 44' 3" W Castro-Pastene et al. (2023)
Coquimbo Los Vilos 31° 55' 9" S 71° 29' 19" W Por un Chile Sustentable: Jorge Toledo (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Coquimbo Culenco Stream, Tranquilla 31° 57' 10" S 70° 41' 0" W Castro-Pastene et al. (2023)
Coquimbo Quelén Alto 31° 59' 5" S 70° 46' 3" W Castro-Pastene et al. (2023)
Valparaíso F30 Papudo Route close to 5 North Route 32° 27' 3" S 71° 19' 35" W Luciano Porte (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso San Felipe 32° 29' 19" S 70° 45' 26" W iNaturalist (2023)
Valparaíso Papudo 32° 30' 18" S 71° 24' 44" W Fauna impactada en las carreteras y caminos de Chile: Luciano Porte (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso Bellotos del Norte Forest. Nogales 32° 34' 6" S 71° 5' 20" W Informe Tierra (Juan Luis Celi) (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso Catapilco 32° 34' 0" S 71° 17' 0" W Nascimento et al. (2021)
Valparaíso El Gallo Stream 32° 38' 15" S 71° 7' 2" W Gestión Natural Consultores (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Metropolitana Clarillo River 32° 48' 51.538" S 70° 24' 19" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso Llay Llay 32° 50' 0" S 70° 57' 0" W In Nascimento et al. (2021)
Valparaíso Llay Llay 32° 51' 0" S 70° 58' 0" W In Nascimento et al. (2021)
Valparaíso Riecillo. Los Andes 32° 55' 2" S 70° 19' 55" W Servicio Agrícola Ganadero (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 57' 0" S 71° 8' 0" W In Nascimento et al. (2021)
Valparaíso N.P. La Campana 32° 57' 23" S 71° 0' 50" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 57' 22" S 71° 3' 0" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 58' 10" S 71° 4' 56" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 58' 22" S 71° 5' 21" W Castro-Pastene et al. (2023)
Valparaíso N.P. La Campana 32° 58' 22" S 71° 7' 18" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 58' 23" S 71° 6' 56" W Castro-Pastene et al. (2023)
Valparaíso N.P. La Campana 32° 58' 31" S 71° 4' 30" W Castro-Pastene et al. (2023)
Valparaíso N.P. La Campana 32° 58' 34" S 71° 7' 19" W Castro-Pastene et al. (2023)
Valparaíso N.P. La Campana 32° 58' 38" S 71° 6' 1" W Castro-Pastene et al. (2023)
Valparaíso N.P. La Campana 32° 59' 18" S 71° 2' 31" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso N.P. La Campana 32° 59' 17" S 71° 5' 12" W Castro-Pastene et al. (2023)
Valparaíso Casa Blanca 33° 0' 0" S 71° 0' 0" W Beltrami et al. (2021)
Valparaíso El Roble Mountain near to N.P. La Campana 33° 0' 0" S 71° 3' 0" W Global Biodiversity Information Facility (2023)
Valparaíso N.P. La Campana 33° 0' 0" S 71° 5' 0" W In Nascimento et al. (2021)
Valparaíso El Cajón near to N.P. La Campana 33° 0' 0" S 71° 6' 0" W Global Biodiversity Information Facility (2023)
Valparaíso Juncal Snowed 33° 1' 0" S 70° 5' 0" W Global Biodiversity Information Facility (2023)
Valparaíso La Campana 33° 0' 44" S 71° 6' 22" W Castro-Pastene et al. (2023)
Valparaíso Limache 33° 1' 0" S 71° 16' 0" W In Nascimento et al. (2021)
Valparaíso La Campana 33° 1' 38" S 71° 3' 49" W Castro-Pastene et al. (2023)
Valparaíso Viña del Mar 33° 1' 59" S 71° 34' 0" W In Nascimento et al. (2021)
Valparaíso El Duraznillo 33° 3' 0" S 71° 2' 0" W Global Biodiversity Information Facility (2023)
Valparaíso Cuesta La Dormida 33° 3' 44" S 71° 1' 24" W Fauna impactada en las carreteras y caminos de Chile: Esperanza Beltrami (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso Caracha 33° 4’ 0” S 71° 2’ 0” W Global Biodiversity Information Facility (2023)
Valparaíso Caracha 33° 4’ 27” S 71° 1’ 43” W Global Biodiversity Information Facility (2023)
Valparaíso La Campana 33° 5' 28" S 71° 17' 24" W Beltrami et al. (2021)
Valparaíso La Campana 33° 5' 29" S 71° 18' 58" W Beltrami et al. (2021)
Valparaíso Placilla 33° 6' 18" S 71° 33' 50" W Fundación Coordinación de felinos silvestres Chile (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Valparaíso Peñuelas Lake 33° 6' 50" S 71° 29' 20" W Global Biodiversity Information Facility (2023)
Valparaíso La Campana 33° 7' 53" S 71° 17' 43" W Beltrami et al. (2021)
Valparaíso La Campana 33° 8' 12" S 71° 6' 24" W Beltrami et al. (2021)
Valparaíso La Campana 33° 10' 49" S 71° 5' 1" W Beltrami et al. (2021)
Valparaíso Peñuelas Lake 33° 10' 43" S 71° 24' 16" W Global Biodiversity Information Facility (2023)
Valparaíso La Campana 33° 11' 19" S 71° 12' 0" W Beltrami et al. (2021)
Metropolitana Colina 33° 12' 0" S 70° 37' 39" W Guzman et al. (2022)
Metropolitana Dam, Colina 33° 12' 24" S 70° 35' 20" W Guzman et al. (2022)
Valparaíso La Campana 33° 11' 58" S 71° 15' 23" W Beltrami et al. (2021)
Valparaíso La Campana 33° 12' 13" S 71° 22' 4" W Beltrami et al. (2021)
Valparaíso La Campana 33° 12' 58" S 71° 19' 18" W Beltrami et al. (2021)
Valparaíso La Campana 33° 13' 4" S 71° 20' 49" W Beltrami et al. (2021)
Valparaíso La Campana 33° 14' 9" S 71° 17' 53" W Beltrami et al. (2021)
Valparaíso La Campana 33° 14' 23" S 71° 16' 24" W Beltrami et al. (2021)
Valparaíso La Campana 33° 14' 50" S 71° 23' 54" W Beltrami et al. (2021)
Metropolitana Melipilla 33° 15' 43" S 71° 13' 21" W iNaturalist (2023)
Metropolitana Juan Pablo II Av. Lo Barnechea 33° 18' 37" S 70° 35' 34" W Guzman et al. (2022)
Metropolitana N.S. El Arrayán. Lo Barnechea 33° 19' 1" S 70° 27' 21" W Guzman et al. (2022)
Valparaíso Viña Veramonte. Valle Casa de Blanca 33° 21' 19" S 71° 23' 26" W Programa Vino y Cambio Climático Biodiversidad Chile (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Metropolitana Melipilla 33° 22' 42" S 71° 13' 40" W iNaturalist (2023)
Metropolitana Curacaví 33° 23' 20" S 71° 14' 15" W Guzman et al. (2022)
Metropolitana Curacaví 33° 24' 0" S 71° 9' 0" W In Nascimento et al. (2021)
Ohiggins Peumo 33° 44' 19" S 71° 14' 27" W Castro-Pastene et al. (2021)
Metropolitana Clarillo River 33° 47' 19" S 70° 25' 50" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Metropolitana El Asiento 34° 1' 0" S 71° 2' 0" W Global Biodiversity Information Facility (2023)
Ohiggins Alfalfalito 34° 7' 0" S 70° 5' 0" W Global Biodiversity Information Facility (2023)
Ohiggins Poqui Mountain 34° 12' 17" S 71° 3' 31" W Castro-Pastene et al. (2023)
O´higgins N.R. Río de los Cipreses 34° 20’ 52” S 70° 24’ 1” W Francisca Aguirre (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
O´higgins Claro River. Las Nieves. Rengo 34° 28’ 24” S 70° 44’ 10” W Nicolás Miranda (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
O´higgins Las Nieves on the road to Las Pulgas Mountain 34° 28’ 54” S 70° 43’ 49” W Nicolás Arcos (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
O´higgins N.S. Alto Huemul 34° 42’ 38” S 70° 27’ 26” W iNaturalist (2023)
Maule Upeo 35° 6’ 0” S 71° 1’ 0” W Global Biodiversity Information Facility (2023)
Maule N.P. Radar 7 Tazas 35° 20' 31" S 70° 56' 41" W Castro-Pastene et al. (2021)
Maule N.P. Radar 7 Tazas 35° 26' 7" S 71° 1' 25" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule N.P. Radar 7 Tazas 35° 26' 58" S 71° 2' 1" W Cooperativa: Corporación Nacional Forestal
Maule N.P. Radar 7 Tazas 35° 27' 59" S 70° 58' 41" W Castro-Pastene et al. (2021)
Maule N.P. Radar 7 Tazas 35° 29' 13" S 70° 55' 14" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule N.P. Radar 7 Tazas 35° 29' 13" S 70° 55' 34" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule N.P. Radar 7 Tazas 35° 29' 45" S 70° 54' 55" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule N.P. Radar 7 Tazas 35° 29' 45" S 70° 56' 15" W Corporación Nacional Forestal (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule N.R. Altos de Lircay 35° 34' 53" S 71° 0' 5" W Castro-Pastene et al. (2021)
Maule N.R. Altos de Lircay 35° 35' 39" S 70° 53' 50" W Castro-Pastene et al. (2021)
Maule N.R. Altos de Lircay 35° 35' 58" S 71° 1' 51" W Castro-Pastene et al. (2023)
Maule N.R. Altos de Lircay 35° 36' 22" S 71° 4' 12" W Global Biodiversity Information Facility (2023)
Maule N.R. Altos de Lircay 35° 39' 39" S 70° 51' 53" W iNaturalist (2023)
Maule Los Cipreses 35° 49' 0" S 70° 49' 57" W Defensores del Alto Maule: Francisco Pulgar (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule Internacional Pehuenche Pass km 125 35° 57' 25" S 70° 34' 30" W Linares en Línea: Defensores Alto Maule (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Maule Maule Lagoon 36° 5' 45" S 70° 27' 6" W iNaturalist (2023)
Maule Private Park Cordillera Los Quemados. 36° 5' 49" S 71° 12' 21" W Agencia de medio el estratega: Funadación Hualo (Chávez-Villavicencio & Tabilo-Valdivieso 2022)
Ñuble N.R. Ñuble 36° 59' 8" S 71° 26' 39" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 36° 59' 29" S 71° 28' 7" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 36° 59' 52" S 71° 26' 39" W Castro-Pastene et al. (2023)
Ñuble RN Ñuble 37° 2' 2" S 71° 26' 45" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 37° 3' 19" S 71° 25' 58" W Castro-Pastene et al. (2023)
Ñuble RN Ñuble 37° 5' 0" S 71° 26' 2" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 37° 5' 29" S 71° 23' 40" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 37° 5' 54" S 71° 29' 44" W Castro-Pastene et al. (2023)
Ñuble N.R. Ñuble 37° 6' 1" S 71° 26' 57" W Castro-Pastene et al. (2023)

Supplementary material

Supplementary material 1. Gráfico de los Componentes Principales de las Variables 

Supplementary material 2.  Dendrograma del Clúster 

Supplementary material 3. Asignación de clústeres para cada variable 

Supplementary material 4 Cargas Cuadráticas y Correlaciones de Variables Dentro de Cada Clúster. Permite visualizar la relación de cada variable con su clúster correspondiente. 

Supplementary material 5 Varianzas Explicadas por los Componentes Principales para Cada Clúster 

Supplementary material 6 Puntuaciones Sintéticas para las seis de Primeras Observaciones en Cada Clúster de 170 

Received: August 07, 2023; Accepted: August 04, 2024

*Corresponding autor cchavez@ucn.cl

Conflicto de intereses / Competing interests: The authors declare no conflict of interest

Rol de los autores / Authors Roles: CC-V. Conceptualización; Investigación; Escritura - Preparación del borrador original; Redacción: revisión y edición. ET-V. Conceptualización; Investigación; Escritura - Preparación del borrador original; Redacción: revisión y edición

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License