1. Introducción
El término "inteligencia artificial" (IA) se refiere a la capacidad de los sistemas informáticos para realizar tareas humanas (como aprender y pensar) que con frecuencia solo se pueden lograr a través de la inteligencia humana (Sadiku et al., 2021). Si bien la IA puede ser una herramienta útil para apoyar y mejorar nuestra experiencia, es importante considerar las limitaciones de la tecnología, el valor de la interacción humana y la orientación en el proceso de aprendizaje (Dimitriadou & Lanitis, 2023).
En los últimos años han aparecido novedosos sistemas basados en inteligencia artificial: Siri, Alexa y Google Assistant, etc., y últimamente ChatGPT. Cada uno con sus ventajas y desventajas, pero a nuestro entender, ChatGTP representa una evolución de la IA tradicional a la IA sensible. Chatbot funciona utilizando el modelo de lenguaje GPT (Generative Pre-trained Transformer) de OpenAI o Modelo de Lenguaje Grande que crea texto rastreando miles de millones de palabras de datos de entrenamiento y aprendiendo cómo las palabras y frases se relacionan entre sí (Stokel-Walker & Van Noorden, 2023). ChatGPT es un modelo de inteligencia artificial sensible, capaz de aprender de las preferencias y patrones de comportamiento de los usuarios personalizando su respuesta, incluso dando consejos a preguntas personales.
ChatGPT tiene el potencial de ser aplicado en diferentes ámbitos, siendo la educación (Huh, 2023), periodismo (Pavlik, 2023), redacción científica (Else, 2023; Thorp, 2023; van Dis et al., 2023), y biotecnología (Holzinger et al., 2023), donde ya existen evidencias; pero también podrían tener aplicaciones en otros campos.
El objetivo de este artículo es analizar las diferentes posibilidades de aplicación del modelo de lenguaje ChatGPT en la industria agrícola y pecuaria.
2. Análisis bibliométrico basado en ChatGTP
Se realizó una búsqueda en Scopus (13 febrero 2023), palabra clave “ChatGPT” y Título, Resumen y Palabras clave, como campos de búsqueda. Se tuvo como resultado 20 documentos que fueron analizados con VosViewer (version 1.6.19) y Bibliometrix (Bliblioshiny).
Con VosViewer se realizó un Mapa de Co-ocurrencias (reemplazando la palabra “humans” por “human” y utilizando el Método de Normalización denominado Fuerza de Asociación). Se encontraron 3 clústeres (Figura 1a): (a) Característica principal de ChatGPT; (b) sistemas de aprendizaje que utiliza ChatGPT; y (c) aplicaciones de ChatGPT. Con Bibliometrix se generó un dendograma (Figura 1b) utilizando el Análisis de Correspondencia Multiple; Palabras clave de Autor, limitado a los 30 términos más importantes y forzado a 3 clústeres. La ventaja de juntar estos dos análisis es que permite visualizar las relaciones entre las palabras más importantes (Figura 1a) y un listado de palabras clave que se juntan por afinidad (Figura 1b).

Figure 1 Mapeo bibliográfico sobre ChatGPT [Fuente: Scopus; TITLE-ABS-KEY (chatgpt); Datos en Material Suplementario]. (a) Mapeo de Co-ocurrencia usando VosViewer (reemplanzando el término “humans” por “human”; Método de Normalización: Association Strength). (b) Topic Dendrogram usando Bibliometrix (Método: Multiple Correspondence Analysis; Campo: Author’s Keywords; Número de términos: 30; Número de clúster: 3).
Clúster 1: Característica principal de ChatGPT. Este clúster relaciona el aprendizaje automático (machine learning) con el humano (human) (Figura 1a), la característica más importante de este modelo de lenguaje. ChatGPT está diseñado para entablar conversaciones de entrada y salida con el humano (Cahan & Treutlein, 2023; Else 2023); proporcionando respuestas más precisas y mantener conversaciones más naturales. Además, las palabras incluidas en el dendograma (Figura 1b) implica que esto es como un juego (gaming) para el humano y de investigación (research) para el ChatGPT.
Clúster 2: Sistemas de aprendizaje que utiliza ChatGPT. Este clúster resume los sistemas de aprendizaje utilizados por este modelo de lenguaje: aprendizaje profundo (Deep learning) y minería de datos (data mining) (Figura 1a). ChatGPT es un programa de aprendizaje profundo (deep learning), con la capacidad de procesar y analizar grandes cantidades de datos (data mining) y generar fragmentos de contenido (Cahan & Treutlein, 2023). El dendograma agrupa palabras en este clúster (Figura 1b) que podrían estar relacionadas a las discusiones que se generan producto del uso de este sistema (ChatGPT) de inteligencia artificial (artificial intelligence) y aprendizaje automático (machine learning), en su relación con la sociedad (society), la ética (ethics), la educación (education), la tecnología (computer), los estudiantes (students) y el cuidado humano (health care).
Cluster 3: Aplicaciones de ChatGPT. Este clúster organiza los términos en los que ChatGPT se viene aplicando. De manera general en la escritura (writing) y publicación de contenidos (publishing) (Figura 1a), y de manera específica en educación (education), periodismo (journalism), redacción científica (knowledge, critical thinking) y comunicación (communication) (Figura 1b). Si bien, en la mayoría de los casos, sólo se refieren a conversaciones sobre los temas anteriormente indicados, en casos específicos se llegan a construir documentos, obras y/o nuevas creaciones, como artículos científicos (Stokel-Walker, 2023).
3. Aplicaciones de ChatGPT en agricultura y pecuaria
A la fecha no existen estudios científicos sobre el uso de ChatGPT en el campo agropecuario. Aunque algunos reportes que se han dado al respecto (Agtecher, 2022), donde se indica que los agricultores a menudo necesitan estar bien informados sobre una amplia gama de temas (mecánica, finanzas, biología y ventas). Usando modelos de lenguaje, como chatGPT, los agricultores pueden recibir rápidamente información de manera eficiente.
3.1. Posibilidades de usos de ChatGPT en agricultura
Como punto de partida decidimos preguntarle (en castellano) a ChatGPT lo siguiente ¿Cuáles son las principales aplicaciones en que ChatGTP revolucionará la agricultura en el mundo? Tomamos la respuesta de ChatGPT como algo referencial para luego proceder a fundamentarla científicamente.
La respuesta de ChatGPT fue:
Como modelo de lenguaje, ChatGPT tiene el potencial de revolucionar la agricultura en varias áreas clave. Algunas de las principales aplicaciones incluyen:
Mejora de la toma de decisiones agrícolas: ChatGPT puede analizar grandes cantidades de datos agrícolas y proporcionar información valiosa para los agricultores, desde recomendaciones de cultivos hasta técnicas de gestión de plagas y enfermedades. Los agricultores pueden hacer preguntas sobre los problemas que enfrentan en sus cultivos, y ChatGPT puede proporcionar información detallada y soluciones prácticas.
Optimización de la producción agrícola: ChatGPT puede ayudar a los agricultores a optimizar sus prácticas de producción, incluyendo la gestión del suelo, el riego, la fertilización y la cosecha. Los agricultores pueden obtener información sobre la mejor época para plantar y cosechar, la cantidad adecuada de nutrientes y agua para sus cultivos y otros factores clave que afectan la producción.
Detección y prevención de enfermedades de las plantas: ChatGPT puede ayudar a los agricultores a detectar y prevenir enfermedades de las plantas antes de que causen daños significativos a los cultivos. Los agricultores pueden hacer preguntas sobre los síntomas de las enfermedades y recibir recomendaciones sobre los tratamientos adecuados.
Gestión del clima: ChatGPT puede proporcionar información detallada sobre el clima y su impacto en la producción agrícola. Los agricultores pueden obtener pronósticos del clima precisos y detallados para planificar sus prácticas de producción y minimizar el impacto de las condiciones climáticas extremas.
Gestión de la cadena de suministro: ChatGPT puede ayudar a los agricultores a gestionar la cadena de suministro de sus productos, desde la producción hasta la venta. Los agricultores pueden hacer preguntas sobre la mejor manera de comercializar sus productos y recibir recomendaciones sobre los mercados y canales de venta adecuados.
En resumen, ChatGPT tiene el potencial de revolucionar la agricultura al proporcionar información valiosa y soluciones prácticas para los agricultores en una variedad de áreas clave, desde la producción hasta la venta.
Si bien es información general, las predicciones de ChatGPT son bastante sorprendentes. Sin embargo, como lo indica Janzen (2023), en general, ChatGPT es muy prometedor, solo mejorará a medida que consuma más datos de entrenamiento, y eso incluye datos agrícolas.
Veamos ahora el fundamento científico que encontramos de cada una de las aplicaciones que da como respuesta ChatGPT. Esta fundamentación la hacemos en base estudios previos que han utilizado la inteligencia artificial y han demostrado lo que sugiere ChatGPT:
a. Mejora de la toma de decisiones agrícolas: Uyeh et al. (2022) desarrollaron un algoritmo evolutivo multiobjetivo de la Inteligencia Artificial que permite mejorar la toma de decisiones agrícolas con aumento en las ganancias netas de hasta 250%. Gallardo et al. (2020) concluyeron que los sistemas de soporte de decisiones (DSS) pueden proporcionar a los productores de hortalizas herramientas eficaces y fáciles de usar para ayudarlos a optimizar el riego y la gestión de nutrientes, tomando decisiones objetivas.
b. Detección y prevención de enfermedades de las plantas: Yağ & Altan (2022) desarrollaron un modelo, basado en algoritmos de aprendizaje automático y aprendizaje profundo, que permite la clasificación en tiempo real de enfermedades en plantas de manzana, uva y tomate. Hassan et al. (2021) desarrollaron un modelo basado en redes neuronales convolucionales profundas y el enfoque de aprendizaje por transferencia que permitía identificar eficientemente enfermedades en las hojas de plantas. Estos modelos hacen posible diagnosticar la enfermedad de la planta en una fase temprana y aplicar el tratamiento adecuado.
c. Optimización de la producción agrícola: Kumar et al. (2023) diseñaron un sistema de optimización multiparámetro en agricultura de precisión para la planificación y programación avanzada del riego basado en la estimación de la humedad del suelo. Di et al. (2022) propusieron un modelo de memoria a corto y largo plazo basado en la optimización bayesiana para construir un algoritmo de extracción de características de crecimiento de cultivos basado en la fusión de datos de múltiples fuentes para la predicción del rendimiento del trigo de invierno.
d. Gestión del clima: Vidyarthi & Jain (2023) desarrollaron un sistema avanzado basado en reglas para el pronóstico de ocurrencia de lluvia mediante la integración de técnicas de aprendizaje automático. Sajith et al. (2022) utilizaron un enfoque de optimización combinatoria para la asignación de tierras considerando objetivos hidroclimáticos utilizando algoritmos de optimización bioinspirados. Ambas propuestas permiten gestionar mejor variables climáticas, y con ello mejoran las ganancias y el rendimiento de los cultivos.
e. Gestión de la cadena de suministro: Ganesh & Kalpana (2022) hacen una revisión de literatura demostrando que Inteligencia Artificial (IA) y el Aprendizaje automático (ML) son técnicas adecuadas y que se vienen utilizando en el campo la gestión de riesgos de la cadena de suministro. Won et al. (2022) concluyen que el uso de la inteligencia artificial (IA) permite que las cadenas de suministro reaccionen dinámicamente a entornos volátiles y alivian la toma de decisiones potencialmente costosa para las pequeñas y medianas empresas. En ambos estudios se demuestra que la inteligencia artificial responde preguntas cruciales que las infraestructuras arcaicas no pueden responder.
3.2. Posibilidades de usos de ChatGPT en el campo pecuario
También el punto de partida fue hacerle una pregunta (en castellano) a ChatGPT ¿Cuáles son las principales aplicaciones en que ChatGTP revolucionará el campo pecuario en el mundo? Tomamos la respuesta de ChatGPT como algo referencial para luego proceder a fundamentarla científicamente.
La respuesta de ChatGPT fue:
ChatGPT tiene el potencial de revolucionar el sector pecuario en varias áreas clave. Algunas de las principales aplicaciones incluyen:
Mejora de la salud y el bienestar animal: ChatGPT puede proporcionar información valiosa a los ganaderos sobre la salud y el bienestar de sus animales, desde el manejo de enfermedades y plagas hasta la nutrición y la cría. Los ganaderos pueden hacer preguntas sobre los síntomas de enfermedades, los tratamientos adecuados y las mejores prácticas de cuidado y recibir recomendaciones precisas y detalladas.
Optimización de la producción animal: ChatGPT puede ayudar a los ganaderos a optimizar sus prácticas de producción, incluyendo la alimentación, la cría y el manejo de la reproducción. Los ganaderos pueden obtener información sobre la mejor época para la cría, la cantidad adecuada de nutrientes para sus animales y otros factores clave que afectan la producción animal.
Detección y prevención de enfermedades zoonóticas: ChatGPT puede ayudar a los ganaderos a detectar y prevenir enfermedades zoonóticas, que son enfermedades transmitidas de los animales a los seres humanos. Los ganaderos pueden obtener información sobre los síntomas de estas enfermedades y las mejores prácticas para prevenir su propagación.
Gestión del clima: ChatGPT puede proporcionar información detallada sobre el clima y su impacto en la producción animal. Los ganaderos pueden obtener pronósticos del clima precisos y detallados para planificar sus prácticas de producción y minimizar el impacto de las condiciones climáticas extremas.
Gestión de la cadena de suministro: ChatGPT puede ayudar a los ganaderos a gestionar la cadena de suministro de sus productos, desde la producción hasta la venta. Los ganaderos pueden hacer preguntas sobre la mejor manera de comercializar sus productos y recibir recomendaciones sobre los mercados y canales de venta adecuados.
En resumen, ChatGPT tiene el potencial de revolucionar el sector pecuario al proporcionar información valiosa y soluciones prácticas para los ganaderos en una variedad de áreas clave, desde la salud y el bienestar animal hasta la gestión de la cadena de suministro y la prevención de enfermedades zoonóticas.
Veamos ahora el fundamento científico de cada una de las aplicaciones que da como respuesta ChatGPT. Esta fundamentación la hacemos también en base estudios previos que han utilizado la inteligencia artificial y han demostrado lo que sugiere ChatGPT:
a. Mejora de la salud y el bienestar animal: Wilkinson et al. (2020) utilizaron la robótica y la inteligencia artificial para desarrollar un modelo de gestión de pastos ayuda, modelo que permite igualar el suministro diario con las necesidades de los animales. Singh et al. (2021) hicieron una revisión de literatura que les permitió demostrar que el uso de sensores mejorados y tecnologías de datos con soluciones basadas en expertos trae una mejora sustancial en las prácticas ganaderas lecheras existentes.
b. Optimización de la producción animal: García et al. (2023) desarrollaron una arquitectura con tres ciclos autónomos de tareas de análisis de datos que permiten a los productores de carne tener una adecuada coordinación, optimización y planificación del proceso productivo. Tedeschi (2022) concluye que, a pesar de que la IA puede ayudar a optimizar los procesos de producción animal, se necesitan sistemas de monitoreo robustos, análisis de big data y algoritmos de inteligencia artificial avanzados para el desarrollo futuro de sistemas basados en modelos dinámicos y autocalibrables.
c. Detección y prevención de enfermedades zoonóticas: Reagan et al. (2022) utilizaron algoritmos de aprendizaje automático para la detección temprana de leptospirosis en perros, siendo más eficiente que la detección serológica aguda tradicional. Ezzano et al. (2021) argumenta que aprovechar los enfoques de inteligencia artificial (IA) en la salud animal (SA) puede contribuir (a) al diagnóstico y la detección de casos de enfermedades, (b) a representar de manera más realista sistemas biológicos complejos, e (c) intervenciones dirigidas.
Gestión del clima y Gestión de la cadena de suministro, por ser áreas y aplicaciones similares, tienen los mismos argumentos que en el caso agrícola.
Para tener éxito en la agricultura y pecuaria, los involucrados deben tener un conocimiento profundo de su entorno y la capacidad de adaptar sus prácticas en función de las condiciones en constante cambio, no confiar sus decisiones estrictamente a ChatGPT. Si bien la IA puede ayudar en estos procesos de toma de decisiones, no puede reemplazar las habilidades de pensamiento crítico y la experiencia del humano. Esto está relacionado con el síndrome del objeto brillante (SOS) (Tedeschi, 2022). El SOS provoca la distracción del panorama general, lo que hace que los agentes se vayan por la tangente, buscando la respuesta fácil, en lugar de centrarse en soluciones auténticas basadas en la experiencia y sentido común, además del conocimiento.
4. Conclusiones
El análisis bibliométrico permitió organizar la información existente sobre ChatGPT en 3 clústeres: (a) Característica principal de ChatGPT; (b) sistemas de aprendizaje que utiliza ChatGPT; y (c) aplicaciones de ChatGPT. Por otro lado, a pesar de que ChatGPT entrega una lista de aplicaciones en el sector agrícola y pecuario, con una pequeña descripción, y sin mayor cantidad de argumentos, se ha demostrado que es posible sean aplicaciones correctas. Esta argumentación, basada en evidencia científica suficiente, permite concluir que la inteligencia artificial y ChatGPT, pueden realmente lograr todas las aplicaciones listadas.
El avance de la tecnología y la disponibilidad de datos en mayor cantidad y calidad, seguirán siendo los factores decisivos de la Inteligencia Artificial en el futuro. Es importante seguir investigando sobre el comportamiento y calidad de los resultados que brindan estos sistemas, comparándolos, cuantificando sus ventajas y desventajas, fortalezas y debilidades, identificando oportunidades de mejora, y buscando nuevas aplicaciones en diferentes áreas del conocimiento, pero dentro de un marco normativo y ético adecuado, aspectos que aún no están muy desarrollados.