SciELO - Scientific Electronic Library Online

 
vol.32 issue1Educational intervention for the control of dengue in family environments in a community in colombia author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Peruana de Medicina Experimental y Salud Publica

Print version ISSN 1726-4634

Abstract

PEREZ DOMINGUEZ, Mariela et al. 5´cap -independent translation of dengue virus genomic RNA. Rev. perú. med. exp. salud publica [online]. 2015, vol.32, n.1, pp.11-18. ISSN 1726-4634.

Objetives. To analyze the involvement of methyl guanosine triphosphate cap (5’cap) and the start site of the genomic RNA of Dengue virus serotype 2 (DENV-2) American genotype in translation, using a cell-free system prepared from human placenta. Materials and methods. The recombinant plasmid pTZ18R-D2 was prepared containing DNA encoding the 5’UTR and the first 201 nucleotides of the viral capsid. This plasmid was used to transcribe the corresponding RNA (RNA-D2) without the 5’ cap. The RNA-D2 was translated in a system consisting of the postmitochondrial fraction (S-30) from human placenta and the incorporation of [14C] aminoacids in the presence of RNA-D2 and in its absence (control) was evaluated. Seven antisense oligonucleotides (OAs1-7) directed against sequences of the SLA, SLB and CHP structures of RNA-D2 were designed and the effect thereof on RNA-D2 translation was analyzed. Results.The RNA-D2 produced a significant increase (p<0.001) in the incorporation of [14C] amino acids, with 75% stimulation of translational activity compared to the control. Analysis of the translation products showed peak incorporation corresponding to peptides with apparent molecular weight close to the expected (7.746 kDa).The OAs5, complementary to a sequence of SLB structure of RNA-D2, completely inhibited translation. Conclusions. The RNA-D2 was translated specifically and efficiently under conditions similar to human intracellular conditions, by an alternative 5’ cap-independent mechanism, which would involve the SLB structure. This mechanism might be seen as an aim in the development of antisense therapies to inhibit virus replication.

Keywords : Dengue virus; Protein Biosynthesis; Oligonucleotides; Antisense.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License