SciELO - Scientific Electronic Library Online

 
vol.73 issue2Acid-base equilibrium of marine seaweeds from the peruvian coast elucidates its high affinity by environmental pollutants author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de la Sociedad Química del Perú

Print version ISSN 1810-634X

Abstract

PICASSO, Gino et al. Total combustion of methylethylketone over fixed bed reactor using bulk and pillared clay supported Fe-Mn and Cu-Mn mixed oxides. Rev. Soc. Quím. Perú [online]. 2007, vol.73, n.2, pp.66-84. ISSN 1810-634X.

Volatile organic compounds (VOC's) are an important class of atmospheric pollutants responsible for production of photochemical oxidants, particularly tropospheric ozone in large scale causing damages in biosphere. Lung problems and ocular irritations in human beings are claimed to ozone. Increasing environmental awareness in the last years has prompted the emergence of stricter regulations covering industrial activities. Catalytic combustion is one of the most promising technologies to controlling VOC's emissions. This work is concerned with the development of low-cost efficient catalysts with high selectivity to CO and long term thermal stability for methylethylketone (MEK) combustion. Fe-Mn and 2 Cu-Mn metal oxide systems, both as bulk oxides and samples supported over peruvian natural clays modified by a pillaring process (PILC) with aluminium (Al-PILC) and titanium (Ti- PILC). All the metal oxide samples were prepared by co-precipitation. The natural clay material was interchanged with Al and Ti hydroxycations (pillars) in order to obtain pillared clays (PILC's) with high specific surface area and porosity. Supported catalysts were prepared over the uncalcined PILC's by the incipient wetness method. Fe-Mn oxides appeared to be very active catalysts. Comparing bulk samples, Fe-Mn oxide had higher activity; however supported Cu-Mn sample showed better performance. Supported samples showed better activities than their corresponding supports. Preliminary XPS studies indicate that Cu-Mn samples gave rise to strong interaction between Cu and the clay structure. This was not the case with the supported Fe-Mn oxides.

Keywords : VOC's combustion; methylethylketone (MEK); mixed oxides; Cu-Mn; Fe- Mn; PILC's.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )