SciELO - Scientific Electronic Library Online

 
vol.73 número2Equilibrio ácido-base de algas marinas del litoral peruano elucida su alta afinidad por contaminantes ambientales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de la Sociedad Química del Perú

versión impresa ISSN 1810-634X

Resumen

PICASSO, Gino et al. Total combustion of methylethylketone over fixed bed reactor using bulk and pillared clay supported Fe-Mn and Cu-Mn mixed oxides. Rev. Soc. Quím. Perú [online]. 2007, vol.73, n.2, pp.66-84. ISSN 1810-634X.

Volatile organic compounds (VOC's) are an important class of atmospheric pollutants responsible for production of photochemical oxidants, particularly tropospheric ozone in large scale causing damages in biosphere. Lung problems and ocular irritations in human beings are claimed to ozone. Increasing environmental awareness in the last years has prompted the emergence of stricter regulations covering industrial activities. Catalytic combustion is one of the most promising technologies to controlling VOC's emissions. This work is concerned with the development of low-cost efficient catalysts with high selectivity to CO and long term thermal stability for methylethylketone (MEK) combustion. Fe-Mn and 2 Cu-Mn metal oxide systems, both as bulk oxides and samples supported over peruvian natural clays modified by a pillaring process (PILC) with aluminium (Al-PILC) and titanium (Ti- PILC). All the metal oxide samples were prepared by co-precipitation. The natural clay material was interchanged with Al and Ti hydroxycations (pillars) in order to obtain pillared clays (PILC's) with high specific surface area and porosity. Supported catalysts were prepared over the uncalcined PILC's by the incipient wetness method. Fe-Mn oxides appeared to be very active catalysts. Comparing bulk samples, Fe-Mn oxide had higher activity; however supported Cu-Mn sample showed better performance. Supported samples showed better activities than their corresponding supports. Preliminary XPS studies indicate that Cu-Mn samples gave rise to strong interaction between Cu and the clay structure. This was not the case with the supported Fe-Mn oxides.

Palabras clave : VOC's combustion; methylethylketone (MEK); mixed oxides; Cu-Mn; Fe- Mn; PILC's.

        · resumen en Español     · texto en Español     · Español ( pdf )