SciELO - Scientific Electronic Library Online

 
vol.13 issue1Reduction of negative externalities due to the use of waste in product development: circular economy in the Chilean olive industry author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Scientia Agropecuaria

Print version ISSN 2077-9917

Abstract

ŞANLıBABA, Pınar  and  BUZRUL, Sencer. Control of Listeria monocytogenes in milk by using phage cocktail. Scientia Agropecuaria [online]. 2022, vol.13, n.1, pp.7-14.  Epub Jan 05, 2022. ISSN 2077-9917.  http://dx.doi.org/10.17268/sci.agropecu.2022.001.

Biocontrol applications such as using phages against the contamination of Listeria monocytogenes are promising trends in terms of reducing the use of chemical additives in food industry. The aim of this study was to determine the effectiveness of Listex P100 phage (phage P100) on different Listeria monocytogenes strains (PL2, PL3, PL9 and PL10) in pasteurized milk and broth. Survival data of L. monocytogenes were successfully described by Weibull model. Time parameter of the Weibull model was used to evaluate the phage-resistances of L. monocytogenes strains. The reduction of L. monocytogenes was greater in broth than in milk regardless of the temperature level and it was significantly higher at 30 °C than at 4 °C in both media. The reductions of L. monocytogenes strains by the phage treatment were between 2.7 to 3.4 log10 units at 30 °C and 1.4 to 2.1 log10 units at 4 °C after 4 days of incubation in broth whereas 1.9 to 2.9 log10 units and 1.0 to1.6 log10 units were observed after 4 days of incubation in milk at 30 °C and 4 °C, respectively. It was found that L. monocytogenes PL2 is the most phage-resistant strain in broth at 30 °C and at 4 °C, and in milk at 30 °C, while L. monocytogenes PL9 is the most phage-resistant L. monocytogenes strain in milk at 4 °C. This study demonstrated P100 phage could be used to control L. monocytogenes counts in milk.

Keywords : Biocontrol; foodborne pathogens; Listex P100; predictive microbiology; Weibull model.

        · text in English     · English ( pdf )