SciELO - Scientific Electronic Library Online

 
vol.28 issue1Plant communities of the desert shrubland in the Tambo and Moquegua rivers basins in the southern PeruRange extension for the Marañon crescentchest (Melanopareia maranonica) in the Marañon river middle basin, Peru author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

Share


Revista Peruana de Biología

On-line version ISSN 1727-9933

Rev. peru biol. vol.28 no.1 Lima Jan-Mar 2021

http://dx.doi.org/10.15381/rpb.v28i1.19745 

Trabajos originales

Distribution and conservation of Cactaceae in Brazilian Seasonally Dry Tropical Forests: insights from floristic and phytosociological surveys

Distribución y conservación de Cactaceae en Bosques Tropicales Estacionalmente Secos: apreciaciones a partir de estudios florísticos y fitosociológicos

Silvana dos Santos Simões1 
http://orcid.org/0000-0002-7299-4353

Daniela C. Zappi2  3 
http://orcid.org/0000-0001-6755-2238

Grênivel Mota da Costa3 
http://orcid.org/0000-0001-5080-8444

Lidyanne Yuriko Saleme Aona4  * 
http://orcid.org/0000-0001-8477-5791

1 Universidade Federal do Recôncavo da Bahia UFRB, Programa de Mestrado em Recursos Genéticos Vegetais, Cruz das Almas, BA, Brazil

2 University of Brasília, Secretaria da Coordenação de Pos-Graduação em Botânica, Caixa Postal 04457, CEP 70919-970, Brasília, DF, Brazil

3 Museu Paraense Emílio Goeldi, Coord. Botânica, Boaventura da Silva, 955, Nazaré. Belém, PA. 66055-090. Brazil

4 Universidade Federal do Recôncavo da Bahia UFRB, Centro de Ciências Agrárias, Ambientais e Biológicas, Rui Barbosa, 710, Centro. Cruz das Almas, BA. 380-000. Brazil

Abstract

Species lists available from floristic and phytosociological studies contain important information about species distributions that are useful for making biogeographical inferences and even to evaluate conservation status of species and ecosystems. In the case of the Caatinga, this information may contribute to challenging the pre-established idea that it is a homogeneous vegetation unit. The strong relation between the substrate and the plant assemblages of the Caatinga may characterise different types of vegetation. In this way, the objective of the present study is to evaluate whether differences in the distribution of Cactaceae relate to distinctive types of substrate (sedimentary and crystalline) as much in terms of floristic richness as species density. Concomitantly, we evaluated the conservation status of the Caatinga areas studied. To obtain the data, we undertook a bibliographic revision of floristic and phytosociological studies in the Caatinga and constructed a similarity matrix using the selected floristic studies in order to evaluate the relation among different areas of Caatinga. We found that 48 areas included Cactaceae species; 33 species distributed in 14 genera were recorded. Among these taxa, Cereus jamacaru was the species that presented the largest number of occurrences, appearing in 17 areas, followed by Pilosocereus gounellei (=Xiquexique gounellei), found in 11 studies, and Tacinga inamoena in 10. The grouping analysis resulted in the formation of 10 groups, with a remarkable relationship between species and soil type. There were differences in both the diversity and density of species related with the degree of conservation of the Caatinga, noticeable from the direct relationship between conservation and richness and, indirectly, between density and number of species.

Keywords: Caatinga; Cactaceae; crystalline substrate; sedimentary substrate; biodiversity; Seasonally dry tropical forests; SDTF; floristic surveys; phytosociological surveys; Brazil

Resumen

Las listas de especies presentadas en trabajos florísticos o fitosociológicos proporcionan importante información sobre distribución, útil para realizar inferencias biogeográficas y evaluar el estado de conservación de especies o incluso de ecosistemas. En el caso de los bosques secos del nordeste de Brasil, conocidos como Caatinga, el análisis de esas listas puede contribuir para confrontar ideas previamente establecidas sobre la homogeneidad de esa unidad de vegetación. La fuerte relación entre el sustrato y los ensambles de plantas de la Caatinga pueden caracterizar distintos tipos de vegetación. Es así como, el objetivo de este trabajo es evaluar sí la distribución de Cactaceae está relacionada con los tipos de sustrato (sedimentar y cristalino), sea con la riqueza florística o la densidad de las especies. Al mismo tiempo, evaluamos el estado de conservación de las áreas estudiadas de la Caatinga. Los datos fueron obtenidos a partir de revisiones bibliográficas, de estudios de florística y fitosociología en la Caatinga. Para evaluar las distintas áreas, con los estudios florísticos seleccionados se preparó una matriz de similaridad. Se encontró que, 48 áreas tenían especies de Cactaceae; 33 especies distribuidas en 14 géneros fueron listadas. Cereus jamacaru fue la especie con el mayor número de puntos en 17 áreas, seguido por Pilosocereus gounellei (=Xiquexique gounellei), encontrado en 11 estudios y Tacinga inamoena, en 10. El análisis resultó en la formación de 10 grupos con fuertes relaciones entre especies y tipos de sustratos. También, encontramos diferencias en diversidad de especies en relación con el estado de conservación de la Caatinga, notable por las relaciones directas entre conservación y riqueza de especies, e indirectas entre densidad y número de especies.

Palabras clave: Caatinga; Cactaceae; sustrato cristalino; sustrato sedimentario; biodiversidad; Bosques tropicales estacionalmente secos; SDTF; listados florísticos; estudios fitosociológicos; Brasil

Introduction

Floristic and phytosociological studies are extremely useful for improving the knowledge about species distributions, giving support to biogeographic inferences, and contributing to both species and ecosystems conservation (Cardoso & Queiroz 2007, Moro et al. 2016). For Caatinga, one of the largest and most threatened centres of dry tropical forest in the world, analyses of similarity and scrutiny of the floristic composition have been used to circumscribe its heterogeneous vegetation types (Linares-Palomino et al. 2010, Moro et al. 2014, Moro et al. 2016, Queiroz 2017).

Many phytophysiognomies are found inside the geographic limits of the Caatinga biome in Eastern Brazil, including semi-deciduous forests, montane cloud forests, rupicolous vegetation growing on quartzitic soils (campo rupestre) and even enclaves of Brazilian savanna. In the present work, the vegetation focussed on is Caatinga sensu stricto. This is characterised by woody deciduous vegetation of variable density and height, a seasonal and discontinuous herbaceous stratum, and the presence of prickly or spiny and/or succulent plant species. The species are adapted to the semiarid climate, with marked seasonality and scarce and irregularly distributed rains (Andrade-Lima 1981, Pennington et al. 2000, Silva et al. 2004). Due to these extreme conditions and its geographical isolation from other SDTF groups (Linares-Palomino 2010) by the barriers formed by the seasonal, fire exposed Cerrado and perhumid Amazon Rainforest biomes, the Caatinga presents almost 530 species of endemic flora (Fernandes et al. 2020).

Despite of Caatinga been considered as a relatively homogeneous vegetation unit in biogeographical and/or ecological large-scale inferences by some authors (Pennington et al. 2000, Linares-Palomino et al. 2010 ). Andrade-Lima (1981) recognized at least 12 different types of vegetation within this biome, however, several works have subsequently pointed out relationships between substrates and different types of vegetation (Queiroz 2006, Moro et al. 2016), such as diversity heterogeneity at local scales (Costa et al. 2015), for example, as in the distribution of Leguminosae (Cardoso & Queiroz 2007) and Cactaceae (Taylor & Zappi 2004). This diversity of vegetation types is defined, primarily, by the association with large geomorphological units, for example, the Chapada Diamantina and Chapada do Araripe (Velloso 2002) and, secondarily, with the water availability, including the different rainfall periods throughout the year (Rocha et al. 2004, Queiroz 2006, Costa et al. 2015).

Studies of the diversity, distribution, and endemism of Leguminosae in physiognomically similar areas of Caatinga have shown that this biome is subdivided into historically distinct biotas (Queiroz 2006, Cardoso & Queiroz 2007). Within these, the phytophysiognomies of the sandy sedimentary surfaces present higher density of individuals per species than the areas associated with a crystalline base (Andrade-Lima 1981, Rocha et al. 2004, Queiroz 2006, Cardoso & Queiroz 2007). A different floristic composition between these two substrates has also

been found in several studies (Rocha et al. 2004, Gomes et al. 2006, Queiroz 2006, Cardoso & Queiroz 2007, Santos et al. 2012, Costa et al. 2015, Moro et al. 2015, Moro et al. 2016). Another type of Caatinga, found on limestone outcrops of the bambuí group, to the west of Bahia and Minas Gerais, has been highlighted by Taylor and Zappi (2004), however, there are very few floristic lists dealing with this vegetation.

In general, the environmental characteristics of dry forests reflect a high abundance and relative diversity of succulent plants adapted to arid climate such as Cactaceae (Pennington et al. 2000, Taylor & Zappi 2004, Moro et al. 2016, Climate-date.org 2018). As eastern Brazil is the third centre of diversity for the Cactaceae family, with 154 species (Taylor & Zappi 2018), a fine scale analysis of cactus diversity, taking into account the different physiognomies of the Caatinga (Moro et al. 2014, Zappi et al. 2011, Queiroz et al. 2017) is much needed.

Therefore; it is clear, that Caatinga biodiversity comprises different distribution patterns, and with the help of vegetation structure analysis from floristic studies, we could answer the following questions: Is there a difference in the distribution of Cactaceae in different types of geomorphological formations? Does floristic composition and the density of individuals/ species vary according to the different physiognomies of Caatinga? Is there evidence that well preserved areas within the Caatinga show richness and density of individuals/species in relation to the other areas analysed?

Material and methods

A revision of floristic and phytosociological studies (woody component using the inclusion criteria of plants generally superior to 5 cm in diameter at ground height and 1m height) published for areas of the Caatinga biome, with specific focus on Caatinga sensu stricto, based on bibliographical searches available at Scielo and Periódicos Capes sites was performed (Table 1). Key words were: phytosociology, floristics, structure survey, and floristic survey plus Caatinga. Some studies were taken from Moro et al. (2014), who did an extensive revision up to 2011. The selection criteria of the studies were the presence of Cactaceae species in the sample, and the existence of a deposited voucher that allowed us to check their identification. For the phytosociological studies we chose only the ones that presented the density parameter (absolute or relative).

Information about geomorphological formations, ecoregions and coordinates were used to classify the Caatinga into four different types of physiognomies (Moro et al. 2016), as follows: 1) sedimentary, where the soil is deeper and with a larger water retention and the vegetation is generally less deciduous, with almost 50% of woody species maintaining their foliage even in the driest periods; 2) crystalline, where the soils are shallower and almost 26% of woody vegetation lose their leaves in the dry period (Rocha et al. 2004); 3) transition between sedimentary and crystalline soils; 4) tree Caatinga, a vegetation transitioning between the Caatinga and Cerrado, but floristically more related to the first (Santos et al. 2011); 5) riverside Caatinga, a vegetation along river courses, characterised by generally evergreen vegetation (Moro et al. 2016) (Figure 1).

For the categorization of conservation status, the areas were classified in three categories: 1) human disturbed areas: areas under human interference, through cutting vegetation or by utilising the soil for agriculture or livestock and mining of rocks; 2) desertification nucleus: areas that are going/have been through the process of losing their plant coverage; 3) preserved areas: areas with more than 20 years without registered use, and the areas within conservation units. All this information was extracted from selected articles (Table 1).

Table 1 List of publications on Caatinga sites that include cacti, consulted for floristic and phytosociologic data. Brazilian state acronyms: BA: Bahia, CE: Ceará, MG: Minas Gerais, PB: Paraíba, PE: Pernambuco, PI: Piauí, RN: Rio Grande do Norte, SE: Sergipe. 

Figure 1 Phytophysiognomies of Caatinga in Bahia State. ARiverside Caatinga at "Contendas do Sincorá" Forest Area (Photo by L. Marinho); BCrystalline Caatinga at "Contendas do Sincorá" Forest Area; CRocky outcrop associated with Caatinga at Boa Nova National Park; Sedimentary Caatinga at Tucano, Bahia (Photo by D. Cardoso); ETree Caatinga at Ribeira do Pombal, Bahia (Photo by J.M. Nascimento Júnior); FHuman interference Caatinga at Cabaceiras do Paraguaçu. 

For floristic analyses, a similarity matrix was prepared by combining the species list from different areas with the species names updated according to BFG (2018). The analyses were performed in the PAST software (Hammer et al. 2001). The phytosociological parameters of relative density and number of individuals were transformed in absolute density to enable comparisons (Table 2) by dividing the number of individuals per species per sampled area using data available in the selected papers. After the standardisation was completed, PAST software was also used to carry out an NMDS analysis (Non-metric multidimensional scaling), utilising the Bray-Curtis index, with a base in the species density of Cactaceae species. In order to group cacti species and Caatinga phytophysiognomies, a Cluster analysis with similarity determined through a Sorensen index was performed. A dendrogram was obtained from the presence and absence species matrix, including only species that occurred in more than one area (Hammer et al. 2001).

Results

A total of 48 studies were selected, two of which were floristic and 24 phytosociological (Table 1).

Presence of cactus species in floristic surveys of Caatinga biome

Thirty-three species were compiled for the Caatinga vegetation (Table 2), belonging to 14 genera. Cereus jamacaru DC. was the most frequent species in the surveys, appearing in 17 studies, followed by Pilosocereus gounellei (F. A. C. Weber) Byles & Rowley (=Xiquexique gounellei (F. A. C.Weber) Lavor & Calvente), found in 11 studies, and Tacinga inamoena (K. Schum.) N. P. Taylor and Stuppy in 10 studies. More than 50% of the species recorded appeared only once in the lists.

Twenty-five species occur in sedimentary soils, while 10 species occur in crystalline soils of Caatinga. Three species were registered in the transition area, nine species in tree Caatinga and one in Caatinga ripária (or riverine Caatinga) (Table 3).

Table 2 Absolute density of Cactaceae from 24 areas from the Caatinga in Brazil. UC: Conservation unit; ND: Desertification nucleus; AA: Anthropic area; CA: Conserved area. * Material determined as P. grandifolia, however this species does not occur outside the Atlantic Rainforest, thus was left as indetermined. ** Indetermined specimen in the original paper that was identified using the online herbarium ASE. 

It was possible to observe the occurrence of species exclusive to the Caatinga physiognomy, with 15 species exclusive to the areas of sedimentary soil and five species exclusive to crystalline soils (Table 3). Only Tacinga subcylindrica M. Machado & N. P. Taylor was common in all four physiognomies of the Caatinga. Meanwhile, Cereus jamacaru, Pilosocereus gounellei (=Xiquexique gounellei) P. pachycladus, P. catingicola, Tacinga inamoena, T. palmadora and Melocactus zehntneri were found in both sedimentary and crystalline soils.

Two cactus species, which appeared in floristic surveys, are found in the Red List of flora threatened by extinction (Table 2, Martinelli & Moraes 2013), the Bahia endemic Espostoopsis dybowskii (EM), and Pereskia aureiflora (VU) from Northern Minas Gerais and Bahia. The later was registered in "Contendas do Sincorá National Forest" (Flona CS), while E. dybowskii was recorded just at the boundary of the Flona CS (Peixoto et al. 2016, Vitório et al. 2019). Apart from these two species, the IUCN (2020) lists Pseudoacanthocereus brasiliensis (VU), while Martinelli & Moraes (2013) classify this species as DD for the Brazilian Red List of Plants. Espostoopsis dybowskii and Arrojadoa marylaniae Soares Filho & M. Machado are also included in the official list of threatened endemic plant species of Bahia state (Secretaria do Meio Ambiente BA 2017).

Floristic similarity analysis

The cophenetic correlation coefficient from the similarity data established among different areas of Caatinga was estimated at 0.843. The clustering analysis resulted in the formation of 10 groups (Figure 2). The clusters were somewhat related to the type of phytophysiognomies defined in Table 3, and only one group did not show similarities with the rest (group 8), being formed by wooded areas strongly influenced by the presence of Brasiliopuntia brasiliensis. Group 1 included areas that occur in different types of formation, such as sedimentary, crystalline, and arboreal surfaces. Group 2, 3¹, 5, 6 and 7 include all areas of sedimentary formation (Fig. 2). Group 7 is the area of Caatinga in the Flona of CS, the only study of Caatinga represented by a floristic survey with Cactaceae as its focus and also the only study with ecological data about cactus populations (Peixoto et al. 2016, Ribeiro-Silva et al. 2016).

Areas located on crystalline formations are found in groups 4 and 3² (Fig. 2). The areas of tree Caatinga can be found within group 8, and group 9 and 10 consist of areas of transition between sedimentary/crystalline with one branch in group 9 belonging to an area of riverside Caatinga.

Table 3 Cactus species and their ocurrence in different physiognomies formations within the Caatinga in Brazil. 

* Exotic species.

Density of Cactaceae species in the Caatinga

The total absolute density of Cactaceae is 8,037.65 ind.ha-1 . Divided by the 112 species records this generates an average of 73.07 ind.ha-1 of Cactaceae in 24 phytosociological studies. These individuals belong to 20 species and are distributed in 10 genera. Pilosocereus gounellei (=Xiquexique gounellei) was the species with the largest absolute density with 3034.93 ind.ha-1, followed by Tacinga palmadora with 1333.52 ind.ha-1, whilst Pereskia aureiflora is the species with the lowest density at 0.55 ind.ha -1. In relation to the number of species, the most representative genera were Pilosocereus (4 sp.), Tacinga and Pereskia (3 sp. each). The structural data shows that all the areas analysed predominantly present species from shrubby habitats (Table 2).

The cluster analysis evidenced separation of species according to a sedimentary substrate gradient, crystalline, transitional, riverside Caatinga and tree Caatinga with the following values for the axes: Axis 1: 35% and in Axis 2: 29% (Figure 3). The analysis demonstrated a gradation between the crystalline and the sedimentary environment, where a larger diversity of Cactaceae species was evidenced in sedimentary Caatinga areas (Table 4).

Figure 2 Similarity analysis of cacti grouping Caatinga types on different substrate (blue group (1): Caatinga with variable substrates, pink group: (2, 31, 5 and 6) sedimentary Caatinga, green group (32 and 4): crystalline Caatinga, black group (7): woody Caatinga and orange group (8 and 9): sedimentary/crystalline transitional Caatinga including a branch of riverside Caatinga). d= Lima et al., 2009; e= Costa et al., 2007; t=Ferraz et al., 1998; Santos et al., 2007; i= Costa et al., 2015; w=Rodal et al. , 1999; m= Silva and Silva, 2012; n= Souza et al., 2015; p= Farias et al., 2017; z= Lacerda et al., 2005; r= Ferreira et al., 2015; y= Araújo et al., 2010; b= Costa et al., 2009; f= Silva et al., 2013; j= Costa et al., 2015; s= Mendes and Castro, 2020; a= Rocha et al., 2004; h= Machado et al., 2012; l= Peixoto et al., 2016; g= Cardoso and Queiroz, 2008; q= Cardoso et al., 2009; o= Lemos and Meguro, 2010 Lemos and Meguro, 2010; x= Souza and Rodal, 2010; v= Silva et al., 2009; c= Pinheiro et al., 2010

Figure 3 Non-metric multidimensional scaling based on absolute density of cactus species occurring in Caatinga areas on different substrate (crystalline, sedimentary/crystalline transition, sedimentary basin, tree Caatinga and riverside Caatinga). 

Table 4 Cactus species that are exclusive of different Caatinga geomorphologic formations in Brazil. Transitional, tree Caatinga and riverside Caatinga had no exclusive species. 

Figure 4 Species number and individual density of cacti in Caatinga areas of different conservation. ND: Desertification Nucleus, AA: Anthropic Area, AC: Conservation Area. 

The desertification area presented the lowest number of species, with only Pilosocereus gounellei (=Xiquexique gounellei), and an absolute density of 3.69 ind.ha-1. The anthropic areas presented 10 species, the majority of which with low densities, although some species are more abundant, mainly those that present vegetative propagation, such as: Pilosocereus gounellei (=Xiquexique gounellei) with absolute density of 2890.99 ind.ha-1, Tacinga palmadora, 1063.82 ind.ha-1, Tacinga inamoena, 950 ind.ha-1 and Cereus jamacaru 189.16 ind.ha-1 (Figure 4, Table 2).

The preserved areas presented the higher species richness, with 18 recorded species. Here, the species with the highest absolute density was Cereus jamacaru 765.56 ind.ha-1, Pilosocereus catingicola subsp. Salvadorensis 445.83 ind.ha-1, Tacinga palmadora, 551.66 ind.ha-1. (Fig. 4, Table 2). Pilosocereus gounellei (=Xiquexique gounellei) was the most common species, occurring in all the analysed areas. In contrast, Pilosocereus pentaedrophorus was only recorded in the anthropic zone. Out of the species surveyed in the phytosociological studies, eight are endemic to the Caatinga (T. palmadora, T. inamoena, H. adscendens, T. funalis, P. bahiensis, C. albicaulis, S. leucostele and P. aureiflora) and one (P. aureiflora) is categorized as VU in the plant Red List (Martinelli & Moraes 2013).

Discussion

Although the Caatinga vegetation presents a considerable richness of Cactaceae species, with 122 species, 63 of which are endemic (Zappi & Taylor 2020), only 28% of these species were sampled in floristic studies and 15.57% in phytosociological studies. It is worth noting that only one study investigates exclusively floristic and structural aspects of Cactaceae populations (Ribeiro-Silva et al. 2016). Investigating how these species are distributed in different types of Caatinga is important to understand the family distribution pattern and to verify whether the soil type in different Caatinga formations determines the occurrence of Cactaceae. In the case of Cactaceae, the crystalline formations were the environment where species best established themselves, as seen from the NMDS analysis presenting the highest absolute density. This type of formation represents the largest part of Brazilian semi-arid region and its geology was due to erosion processes during the Tertiary period exposing the pre-Cambrian gneissic basement of the region. This formation generally presents shallow, rocky soils, that are rich in nutrients (Ab'Sáber 1974, Pinheiro et al. 2010, Araújo et al. 2011, Marques et al. 2014, Moro et al. 2016). Although the crystalline areas present higher density for the family, it was the sedimentary environments, characterised by deeper soils, with higher capacity for water retention, that showed the largest diversity of Cactaceae species. This diversity can be attributed to environmental factors such as: rainfall, temperature, and physico-chemical composition of the soil, favourable to the occurrence of a higher number of species (Fraga et al. 2012, Moro et al. 2016).

In riverside Caatinga, the NMDS analyses and similarity are associated with species occurring in crystalline environments. Moro et al. (2016) incorporate these areas as subtypes of crystalline Caatingas, as these environments are found in the same ecoregions and present affinity with the crystalline basement. The tree Caatinga has only one representative common to the sedimentary formation, Pereskia bahiensis, and it does not form a relation to any other group. The genus Pereskia is a basal group within Cactaceae, with little succulence and deciduous leaves in the dry season. The adaptations of P. bahiensis to the semi-arid region are comparable to those of other shrubby, non-succulent genera, so it is not surprising that this species presents less of an affinity with the rest of Cactaceae in terms of its habitat and may also occur in sedimentary as well as in tree Caatinga.

The similarity analysis of NMDS based on the distribution of Cactaceae reinforces Queiroz (2006), Costa et al. (2015) and Moro et al. (2016) regarding the idea that the Caatinga, despite representing a core of dry forest, consists of a varied biota, and should not be treated as a homogeneous vegetation unit. Cactaceae species are good markers for the phytophysiognomy of the Caatinga appearing in all the studied areas. In general, there have been species of Cactaceae associated with both crystalline and sedimentary formations. This is the preponderant factor in the clusters, even higher than the geographic proximity, as distant areas were grouped based on the substrate (Fig 2 , 3).

Concerning the level of conservation of the species among human disturbed areas, preserved areas and the desertification core, there is a pattern between preserved areas and richness, and an indirect relation between density and the number of species. The results are in agreement with the floristic surveys completed for areas of Caatinga, where the anthropic areas present a larger dominance of few species, a smaller diversity of species and lower density (Fig. 4). In the case of Cactaceae, the species that present the strongest dominance are characterised by presenting an elevated rate of propagation, relying on both vegetative and seed propagation (Meiado 2012, Nascimento et al. 2015).

The desertification core includes only Pilosocereus gounellei (=Xiquexique gounellei), a species typical of open, barren environments, able to dwell in soil as well as rocky substrate, with high capacity to propagate both vegetatively and through seeds, which can explain its occurrence in an adverse environment (Taylor & Zappi 2004, Nascimento et al. 2015).

These results corroborate that better preserved environments tend to present larger species richness with a stable population (Magurran 2006, McGill et al. 2007). Diverse factors interfere with the pattern of species density and diversity, such as temperature, rainfall indexes, soil properties, pollination and dispersal, production of viable seeds and human interference (Peters 2002, Salo 2004).

It is worth emphasizing that, from the species listed, Pilosocereus gounellei (=Xiquexique gounellei), Tacinga inamoena, T. palmadora and Cereus jamacaru are the species most often utilised by the local community of the Caatinga, mainly for feeding livestock and for wood (Andrade et al. 2006). According to the residents of these areas, in the past, the density of Cactaceae individuals was higher (Lucena et al. 2015). Duque (2004) also mentions the use of Cactaceae by rural people, particularly during periods of prolonged drought, highlighting that there is no sustainable management of these species and that the lack of replanting can lead to the diminishing of less robust or uncommon species.

Conclusion

Both floristic and phytosociological studies that include Cactaceae carried out in areas of Caatinga agree with the idea proposed by Queiroz (2006), whereby the Caatinga shows a distinct biota from other rainforest cores.

Cactaceae are a good marker to distinguish patterns within the Caatinga. Caatinga on sedimentary substrate is richer in cactus species, while crystalline substrate supports a few exclusive species, such as Pilosocereus pentaedrophorus and Pseudoacanthocereus brasiliensis.

Some species display similarities with other areas of Caatinga despite being geographically distant (e.g. Harrisia adscendens for crystalline areas). Also species found to form distinct groups between the crystalline and sedimentary Caatinga, with different composition, serve as evidence that these two environments represent distinct floristic formations.

The absence of several flagship species, some of which are rare, such as Arrojadoa marylaniae, or threatened (e.g. Melocactus conoideus, M. azureus, M. ferreophilus, M. pachyacanthus), from any of these lists is likely due to their occurrence on bare rock or rock crevices, areas rarely sampled by the type of phytosociological studies used for the present work. In the present work, this limitation is also reflected in the lack of information regarding mining (the main human disturbance faced by the rocky habitats), suggesting that more work must be devoted to the floristic and phytosociological study of rock outcrops on gneissic, quartzitic and limestone outcrops in the region.

Floristic and phytosociological data are important for the outlining of new priority areas for conservation of Cactaceae and representative areas of the Caatinga. Species restricted to certain environments are at risk of extinction, especially if the species are already vulnerable. The fact that these species are not present or are at very low densities in the anthropogenically disturbed areas, emphasizes the importance of maintaining natural areas.

On the other hand, certain species remain abundant, in disturbed areas, such as as Tacinga palmadora, T. inamoena, Cereus jamacaru and Pilosocereus gounellei (=Xiquexique gounellei), likely as a result of the type of reproduction exhibited by those taxa

Agradecimientos / Acknowledgments:

This paper is part of SSS MSc dissertation (Programa de PósGraduação em Recursos Genéticos Vegetais). We would like to thank Vanessa Zappi-Taylor for the translation, J.M. Nascimento Júnior and Dr. L. Marinho (UFMA) for the photos of Figure 1. DCZ currently holds a productivity grant from the Brazilian National Research Council (CNPq)

Literature cited

Ab’sáber A. 1974. O domínio morfoclimático semi-árido das Caatingas brasileiras. Geomorfologia 43: 1-39. [ Links ]

Alcoforado-Filho FG., Sampaio EVSB, Rodal MJN. 2003. Florística e fitossociologia de um remanescente de vegetação caducifólia espinhosa arbórea em Caruaru, Pernambuco. Acta Botanica Brasilica 17: 287-303. 10.1590/S0102-33062003000200011 [ Links ]

Andrade LA, Oliveira FX, Neves Félix LP. 2007. Análise da vegetação sucessional em campos abandonados no agreste paraibano. Revista Brasileira de Ciências Agrárias 2: 135-142. [ Links ]

Andrade CTS, Marques JGW, Zappi DC. 2006. Utilização de cactáceas por sertanejos baianos. Sitientibus serie Ciencias Biologicas (SCB) 6: 3-2. [ Links ]

Andrade-Lima D. 1981. The Caatingas dominium. Revista Brasileira de Botânica4: 149-163. [ Links ]

Araujo FS, Costa RC, Lima JR. 2011. Floristics and life-forms along a topographic gradient, central-western Ceará, Brazil. Rodriguésia 62: 341-366. 10.1590/2175-7860201162210 [ Links ]

Araújo KD, Parente HN, Éder-Silva E, Ramalho CI, Dantas RT, Andrade AP, Silva DS. 2012. Estrutura fitosociológica do estrato arbustivo-arbóreo em áreas contíguas de Caatinga no Cariri Paraibano. Brazilian Geographical Journal: Geosciences and Humanities Research Médium 3: 155-169. [ Links ]

Araújo KD, Parente HN, Éder-Silva E, Ramalho CI, Dantas RT, Andrade AP, Silva DS. 2010. Levantamento florístico do estrato arbustivo-arbóreo em áreas contíguas de Caatinga no Cariri paraibano. Revista Caatinga 23: 63-70. [ Links ]

Benevides DS, Maracajá PB, Sizenando-Filho FA, Guerra AMNM, Pereira TFC. 2007. Estudo da flora herbácea da Caatinga no Município de Caraúbas no Estado do Rio Grande do Norte. Revista Verde 2: 33-34. [ Links ]

BFG (The Brazil Flora Group). 2018. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527. 10.1590/2175-7860201869402 [ Links ]

Braulio GL, Coelho MFB. 2015. Estrutura do componente arbustivo-arbóreo de um remanescente de Caatinga no estado do Ceará, Brasil. Cerne 21(4): 665-672. [ Links ]

Calixto-Júnior JT, Drumond MA. 2011. Estrutura fitossociológica de um fragmento de Caatinga Sensu stricto 30 anos após corte raso, Petrolina-PE, Brasil. Revista Caatinga 24: 67-74. 10.1590/01047760201521041807 [ Links ]

Cardoso DBOS, Queiroz LP. 2007. Diversidade de Leguminosae nas Caatingas de Tucano, Bahia: implicações para a fitogeografia do semi-árido do Nordeste do Brasil. Rodriguésia 58: 379-391. 10.1590/2175-7860200758212 [ Links ]

Cardoso DBOS, Queiroz LP. 2008. Floristic composition of Seasonally Dry Tropical Forest fragments in Central Bahia, Northeastern Brazil. Journal of the Botanical Research Institute of Texas 2: 551-573. https://www.jstor.org/stable/41971674Links ]

CLIMATE-DATE.ORG. 2018. Temperaturas e precipitações médias/clima em Caatinga. < http://pt.climate-data.org/location/315638 >. 2018-06-01. [ Links ]

Costa GM, Cardoso D, Queiroz LP, Conceição AA. 2015. Variações locais na riqueza florística em duas ecorregiões da Caatinga. Rodriguésia 66: 685-709. 10.1590/2175-7860201566303 [ Links ]

Costa KC, Lima ALA, Fernandes CFM, Silva MCNA, Silva ACBL, Rodal MJN. 2009. Flora vascular e formas de vida em um hectare de Caatinga no nordeste brasileiro. Revista Brasileira de Ciências Agrárias 4: 48-54. [ Links ]

Costa RC, Araújo FS, Lima-Verde LW. 2007. Flora and life-form spectrum in an area of deciduous thorn woodland (Caatinga) in northeastern, Brazil. Journal of Arid Environments 68: 11-22. 10.1016/j.jaridenv.2006.06.003 [ Links ]

Costa TCC, Oliveira MAJ, Accioly LJO, Silva FHBB. 2009. Análise da degradação da Caatinga no núcleo de desertificação do Seridó (RN/PB). Revista Brasileira de Engenharia Agrícola e Ambiental 13: 961-974. [ Links ]

Duque JG. 2004. O Nordeste e as lavouras xerófilas. Fortaleza: Banco do Nordeste do Brasil. [ Links ]

Fabricante JR, Andrade LA, Dias-Terceiro RG. 2012. Divergências na composição e na estrutura do componente arbustivo-arbóreo entre duas áreas de Caatinga na região do submédio São Francisco (Petrolina, PE/Juazeiro, BA). Revista Biotemas 25: 97-109. 10.5007/2175-7925.2012v25n3p97 [ Links ]

Farias RC, Lacerda AV, Gomes AC, Barbosa FM, Dornelas CSM. 2017. Riqueza florística em uma área ciliar de Caatinga no Cariri Ocidental da Paraíba, Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade 4: 109-118. 10.21438/rbgas.040711 [ Links ]

Ferraz EMN, Rodal MJN, Sampaio EVSB, Pereira RCA. 1998. Composição florística em trechos de vegetação de Caatinga e brejo de altitude na região do Vale do Pajeú, Pernambuco. Revista Brasileira de Botânica 21: 5-15. 10.1590/S0100-84041998000100002 [ Links ]

Fernandes MF, Cardoso D, Queiroz LP. 2020. An updated plant checklist of the Brazilian Caatinga seasonally dry forests and woodlands reveals high species richness and endemism. Journal of Arid Environments 174: 104079. 10.1016/j.jaridenv.2019.104079. [ Links ]

Ferreira TC, Souza JTA, Xavier JF. 2015. Diversidade florística em agroecossitemas no município de Gurjão-PB. REB 8: 177-189. [ Links ]

Fraga EM, Braz DM, Rocha JF, Pereira MG, Figueredo DV. 2012. Interação microrganismo, solo e flora como condutores da diversidade na Mata Atlântica. Acta Botanica Brasilica 26: 857-865. 10.1590/S0102-33062012000400015 [ Links ]

Gomes APS, Rodal MJN, Melo AL. 2006. Florística e fitogeografia da vegetação arbustiva subcaducifólia da Chapada de São José, Buíque, PE, Brasil. Acta Botanica Brasilica 20: 37-48. 10.1590/S0102-33062006000100005 [ Links ]

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9. [ Links ]

ICMBio 2018. Ameaças. < http://www.icmbio.gov.br/cbc/conservacao-da-biodiversidade/ameacas.html >. Access: 2020-05-05. [ Links ]

IUCN 2020. The IUCN Red List of Threatened Species. <Available Available http://www.iucnredlist.org >. 2020-05-05. [ Links ]

Lacerda AV, Nordi N, Barbosa FM, Watanabe T. 2005. Levantamento florístico do componente arbustivo-arbóreo da vegetação ciliar na bacia do rio Taperoá, PB, Brasil. Acta Botanica Brasilica 19: 647-656. 10.1590/S0102-33062005000300027 [ Links ]

Lemos JR, Meguro M. 2010. Florística e fitogeografia da vegetação decidual da Estação Ecológica de Aiuaba, Ceará, Nordeste do Brasil. Revista Brasileira de Biociências 8: 34-43. [ Links ]

Lemos JR, Rodal MJN. 2002. Fitossociologia do componente lenhoso de um trecho da vegetação de Caatinga no Parque Nacional Serra da Capivara, Piauí, Brasil. Acta Botanica Brasilica 16: 23-42. 10.1590/S0102-33062002000100005 [ Links ]

Lima BG, Coelho MFB. 2015. Estrutura do componente arbustivo-arboréo de um remanescente de Caatinga no estado do Ceará, Brasil. Cerne 21: 665-672. 10.1590/01047760201521041807 [ Links ]

Lima JR, Sampaio EVSB, Rodal MJN, Araujo FS. 2009. Composição florística da floresta estacional decídua montana de Serra das Almas, CE, Brasil. Acta Botanica Brasilica 23: 756-763. 10.1590/S0102-33062009000300015 [ Links ]

Linares-Palomino R, Oliveira-Filho AT. Pennington RT. 2010. Neotropical seasonally dry forests: Diversity, endemism, and biogeography of woody plants. In: Dirzo R, Young HS, Mooney HA Ceballos G. Seasonally dry tropical forests: Ecology and conservation. Island Press, Washington, D.C. Pp. 3-21. [ Links ]

Lucena CM, Carvalho NTK, Ribeiro JES, Quirino ZGM, Casas A, Lucena RFP. 2015. Conhecimento botânico tradicional sobre cactáceas no semiárido do Brasil. Gaia scientia 9: 77-90. [ Links ]

Machado WJ, Prata APN, Mello AA. 2012. Floristic composition in areas of Caatinga and Brejo de Altitude in Sergipe state, Brazil. Check List 8: 1089-1101. 10.15560/8.6.1089 [ Links ]

Magurran AE. 2006. Measuring biological diversity. Maldem: Blackwell Publishing. [ Links ]

Marques FA, Nascimento AF, Araújo-Filho JC. Silva AB. 2014. Solos do Nordeste. Brasília: EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. [ Links ]

Martinelli G, Moraes MA. 2013. Livro vermelho da flora do Brasil. Rio de Janeiro: Centro Nacional de Conservação da Flora. Jardim Botânico do Rio de Janeiro: Andrea Jakobsson Estúdio. [ Links ]

Matalho JH. 2001. Indicadores de desertificação. Brasília: UNESCO. [ Links ]

Meiado MV. 2012. Germinação de sementes de cactos do Brasil: fotoblastismo e temperaturas cardeais. Informativo Abrates 22: 20-23. [ Links ]

Mendes MRDA, Castro AAJF. 2010. Vascular flora of semi-arid region, São José do Piauí, state of Piauí, Brazil. Check List 6: 39-44. 10.15560/6.1.039 [ Links ]

McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, et al. 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters. 10(10):995-1015. doi: 10.1111/j.1461-0248.2007.01094.x. [ Links ]

Moro M.F., Araújo F.S., Rodal M.J.N. & Martins F.R.. 2015. Síntese dos estudos florísticos e fitossociológicos realizados no semiárido brasileiro, pp. 412-451. In: Eisenlohr P.V., Felfili J.M., Melo M.M.R.F. (editors). Fitossociologia no Brasil: métodos e estudo de caso. Viçosa: Editora da Universidade Federal de Viçosa. [ Links ]

Moro MF, Lughadha EN, Filer DL, Araújo FS de, Martins FR. 2014. A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: a synthesis of floristic and phytosociological surveys. Phytotaxa. 160(1):1118. 10.11646/phytotaxa.160.1.1. [ Links ]

Moro MF, Nic Lughadha E, de Araújo FS, Martins FR. 2016. A Phytogeographical Metaanalysis of the Semiarid Caatinga Domain in Brazil. The Botanical Review 82(2):91-148. 10.1007/s12229-016-9164-z. [ Links ]

Nascimento CES, Rodal MJN, Cavalcanti AC. 2003. Phytosociology of the remaining xerophytic woodland associated to an environmental gradient at the banks of the São Francisco river Petrolina, Pernambuco, Brazil. Brazilian Journal of Botany. 26(3):271-287. 10.1590/S0100-84042003000300001. [ Links ]

Nascimento JPB, Vieira DCM, Meiado MV. 2015. Ex situ seed conservation of Brazilian cacti. Gaia Scientia. 9(2). https://periodicos.ufpb.br/ojs2/index.php/gaia/article/view/24566. [ Links ]

Oliveira LDSDD, Moro MF, Lughadha EMN, Martins FR, Melo ALD, Esser H-J, Sales MF. 2013. Hidden in the dry woods: Mapping the collection history and distribution of Gymnanthes boticario, a well-collected but very recently described species restricted to the dry vegetation of South America. Phytotaxa. 97(1):1-16. 10.11646/phytotaxa.97.1.1. [ Links ]

Oliveira MEA, Sampaio EVSB, Castro AAJF, Rodal MJN. 1997. Flora e fitossociologia de uma área de transição Caatinga de areia-carrasco em Padre Marcos-PI. Naturalia 22: 131-150. [ Links ]

Parente HN, Araujo KD, Silva EE, Andrade AP, Dantas RT, Silva DS, Ramalho CI. 2010. Parâmetros fitossociológicos do estrato arbóreo-arbustivo em áreas contíguas de Caatinga no cariri paraibano. Revista Científica de Produção Animal 12: 138-141. 10.15528/2176-4158/rcpa.v12n2p138-141 [ Links ]

Peixoto MR, Zappi DC, Ribeiro-Silva S, Costa GM, Aona LYS. 2016. Cactus survey at the Floresta Nacional of Contendas do Sincorá, Bahia, Brazil. Bradleya 34: 38-54. [ Links ]

Pennington RT, Prado DE, Pendry CA. 2000. Neotropical seasonally dry forests and quaternary vegetation changes. Journal of Biogeography 27: 261-273. 10.1046/j.1365-2699.2000.00397.x [ Links ]

Pereira-Júnior LR, Andrade AP, Araújo KD. 2012. Composição florística e fitossociológica de um fragmento de Caatinga em Monteiro, PB. Holos 28: 73-87. 10.15628/holos.2012.1188 [ Links ]

Peters DPC. 2002. Plant species dominanc at a grassland-Shrubland ecotone: and individual-based gap dynamics model of herbaceous and species woody. Ecological modeling 152: 5-32. 10.1016/S0304-3800(01)00460-4 [ Links ]

Pinheiro K, Rodal MJN, Alves M. 2010. Floristic composition of different soil types in a semiarid region of Brazil. Revista Caatinga 23: 68-77. [ Links ]

Queiroz JA, Trovão DMBM, Oliveira AB, Oliveira ECS. 2006. Análise da estrutura fitossociológica da Serra do Monte, Boqueirão, Paraíba. Revista de Biologia e Ciências da Terra 6: 251-259. [ Links ]

Queiroz LP. 2006. The Brazilian Caatinga: Phytogeographical patterns inferred from distribution data of the Leguminosae. In: Pennington RT, Lewis GP, Ratter JA. (eds.). Neotropical savannas and dry forests: plant diversity, biogeography, and conservation. Taylor & Francis CRC Press, Oxford, 113-149. 10.1201/9781420004496 [ Links ]

Queiroz LP. 2017. Diversity and Evolution of Flowering Plants of the Caatinga Domain. In: Silva JMC, Leal IR, Tabarelli M. (Org.). Caatinga. Cham: Springer International Publishing, pp. 23-63. 10.1007/978-3-319-68339-3_2 [ Links ]

Ribeiro-Silva S, Medeiros MB, Lima VVF, Peixoto MR, Aona LYS. 2016. Patterns of Cactaceae species distribution in a protected area in the semiarid Caatinga biome of northeastern Brazil. Edinburgh Journal of Botany 73: 157170. 10.1017/S0960428616000044 [ Links ]

Rocha PLB da, Queiroz LP de, Pirani JR. 2004. Plant species and habitat structure in a sand dune field in the brazilian Caatinga: a homogeneous habitat harbouring an endemic biota. Brazilian Journal of Botany. 27(4):739-755. doi:10.1590/S0100-84042004000400013. [ Links ]

Rodal MJN, Martins FR, Sampaio EVSB. 2008. Levantamento quantitativo das plantas lenhosas em trechos de vegetação de Caatinga em Pernambuco. Revista Caatinga 21: 192-205. [ Links ]

Rodal MJN, Nascimento LM, Melo AL. 1999. Composição florística de um trecho de vegetação arbustiva caducifólia, no município de Ibimirim, PE, Brasil. Acta Botanica Brasilica 13: 15-28. 10.1590/S0102-33061999000100002 [ Links ]

Salo LF. 2004. Population dynamics of red brome (Bromus madritensis subsp. rubens): times for concern, opportunities for management. Journal of Arid Environments 57: 291-296. 10.1016/S0140-1963(03)00110-1 [ Links ]

Sampaio EVSB, Araujo EL, Salcedo IHJ, Salcedo IH, Tiessen TH. 1998. Regeneração da vegetação da Caatinga após o corte e queima, em Serra Talhada, PE. Pesquisa Agropecuária Brasileira 33: 612-632. [ Links ]

Sanquetta MNI, Corte APD, Sanqueta CR, Rodrigues AL, Mongon F. 2014. Diversidade e estrutura fitossociológica da Caatinga na Região de Brumado-Ba. Enciclopédia Biosfera 10: 2157-2167. [ Links ]

Santana JAS, Souto SJ. 2006. Diversidade e estrutura fitossociológica da Caatinga na estação ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 6: 232-242. [ Links ]

Santos JC, Leal IR, Almeida-Cortez JS, Fernandes JW, Tabarelli M. 2011. Caatinga: The Scientific Negligence experienced by a dry tropical forest. Tropical Conservation Science 4: 276-286. 10.1177/194008291100400306 [ Links ]

Santos RM dos, Barbosa ACMC, Almeida H de S, Vieira F de A, Santos PF, Carvalho DA de, Oliveira-Filho AT de. 2011. Estrutura e florística de um remanescente de Caatinga arbórea em Juvenília, norte de Minas Gerais, Brasil. CERNE. 17(2):247-258. doi:10.1590/S0104-77602011000200013. [ Links ]

Santos RM, Vieira FA, Fagundes M, Nunes YRF, Gusmão E. 2007. Riqueza e similaridade florística de oito remanescentes florestais no norte de Minas Gerais, Brasil. Revista Árvore 31: 135-144. 10.1590/S0100-67622007000100015 [ Links ]

Secretaria de meio ambiente do estado da Bahia SEMABA. (2017). Lista oficial das espécies endêmicas da flora ameaçadas de extinção do estado da Bahia [ Links ]

Silva ACC, Prata APN, Mello AA. 2013. Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9: 733-739. 10.15560/9.4.733 [ Links ]

Silva ECA, Lopes IS, Silva JL. 2012. Composição florística de um fragmento de Caatinga do município de Itapetim, Pernambuco. Scientia Plena 8(4(b)).. https://www.scientiaplena.org.br/sp/article/view/1011. [ Links ]

Silva JMC, Tabarelli M, Fonseca MT, Lins LV. 2004. Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Brasília: MMA/UFPE/Conservation International Biodiversitas Embrapa Semi-árido. [ Links ]

Silva KA da, Araújo E de L, Ferraz EMN. 2009. Herbaceous floristic study and relationship with soil of crystalline shield and sedimentary basin Caatinga areas at Petrolândia, Pernambuco State, Brazil. Acta Botanica Brasilica. 23(1):100-110. 10.1590/S0102-33062009000100013. [ Links ]

Souza BI, Menezes R, Camara AR. 2015. Efeitos da desertificação na composição de espécies do bioma Caatinga, Paraíba/Brasil. Investigaciones Geográficas 88: 45-59. 10.14350/rig.44092 [ Links ]

Souza JAN, Rodal MJN. 2010. Levantamento florístico em trecho de vegetação ripária de Caatinga no Rio Pajeú, Floresta/Pernambuco Brasil. Revista Caatinga 23(4): 54-62. [ Links ]

Taylor N, Zappi D. 2004. Cacti of Eastern Brazil. Richmond: Royal Botanic Gardens, Kew. 10.2985/0007-9367(2005)77[43:COEB]2.0.CO;2 [ Links ]

Taylor N, Zappi D. 2018. Additions and corrections to ‘Cacti of Eastern Brazil’. Bradleya 36: 2-21. 10.25223/brad.n36.2018.a2 [ Links ]

Trovao DMBM, Freire AM, Melo JIM. 2010. Florística e fitossociologia do componente lenhoso da mata ciliar do riacho de bodocongó, semiárido paraibano. Revista Caatinga 23: 78-86. [ Links ]

Velloso AL, Sampaio EVSB, Giulietti AM, Barbosa MRV, Castro AAJF, Queiroz LP, Fernandes A, Oren DC, Cestaro LA, Carvalho AJE, Pareyn FGC, Silva FBR, Miranda EE, Keel S, Gondim RS. 2002. Ecorregiões: Propostas para o Bioma Caatinga. APNE, The Nature Conservancy do Brasil, Recife. 76p. [ Links ]

Vitório C, Marinho L, Costa G, Aona L. 2019. Flowering plants of Contendas do Sincorá National Forest (Caatinga, northeastern Brazil). Braz. J. Bot 42, 717-725. 10.1007/s40415-019-00564-9 [ Links ]

Zappi D, Taylor N. 2020. Cactaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. < http://floradobrasil.jbrj.gov.br/reflora/floradobra-sil/FB70 >. 2020-02-01. [ Links ]

Zappi D, Taylor N, Santos MR. 2011. Parte I: Conservação das Cactaceae do Brasil. In: Silva R.S., Zappi D., Taylor N., Machado M. Plano de ação nacional para a conservação das Cactaceae. Brasília: Instituto Chico Mendes de conservação e biodiversidade. Pp: 27-28 [ Links ]

Fuentes de financiamiento / Funding:

Research Support, Bahia (FAPESB) grants BOL0468 / 2016 and RED0034 / 2014. Brazilian National Research Council (CNPq) grant 442604 / 2014-9

Received: July 07, 2020; Accepted: December 15, 2020; pub: February 25, 2021

*Corresponding author lidyanne.aona@gmail.com

Conflicto de intereses / Competing interests:

The authors affirm that there are no conflicts of interest.

Rol de los autores / Authors Roles:

SdSS: Conceptualization, Data curation, Formal Analysis, Methodology, Writing original draft, Investigation. DCZ: Validation, Writing review & editing, Investigation. GMdC: Formal Analysis, Investigation, Methodology, Writing-review & editing. LYSAona: Funding acquisition, project administration, Supervision, Investigation, Writing-review & editing.

Aspectos éticos / legales; Ethics / legals:

Authors declare that they did not violate or omit ethical or legal norms in this research.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License