SciELO - Scientific Electronic Library Online

 
vol.31 número1Primeros registros del tigrillo Leopardus pardalis (Carnivora, Felidae) en el Santuario Histórico de Machupicchu, Cusco, Perú índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista Peruana de Biología

versión On-line ISSN 1727-9933

Rev. peru biol. vol.31 no.1 Lima ene./mar. 2024  Epub 15-Mar-2024

http://dx.doi.org/10.15381/rpb.v31i1.24889 

Trabajos originales

Bioinformatic identification of Single Nucleotide Polymorphisms (SNPs) in keratin-associated protein genes in alpacas (Vicugna pacos)

Identificación bioinformática de Polimorfismos de Nucleótido Simple (PNSs) en genes de proteínas asociadas a queratinas en alpacas (Vicugna pacos)

1. Universidad Nacional Agraria La Molina, Facultad de Zootecnia, Ciudad Universitaria, Av La Molina s/n, La Molina 15024, Lima, Perú.deyanirafigueroa66@gmail.com, gustavogr@lamolina.edu.pe

2. Universidad Nacional de San Antonio Abad del Cusco, Facultad de Agronomía y Zootecnia, Cusco, Perú. mmoremontoya@gmail.com

3. University of Minnesota, Department of Animal Science, USA. apl@umn.com

Abstract

This study aims to identify single nucleotide polymorphisms (SNPs) within KRTAP genes in alpacas (Vicugna pacos), which play a fundamental role in defining their physico-mechanical properties and potentially the quality of alpaca fiber, the primary product of their breeding. Thirty-four KRTAP genes, as annotated in the reference genome VicPac3.1, were investigated. Utilizing the reference genome, along with nine additional genomes and reads from 300 reduced representation DNA libraries of alpacas, SNPs were identified. Minor allele frequency (MAF) and genotyping rates were computed using PLINK software, while Illumina Scores were determined for each SNP using Illumina Design Studio software. Markers meeting the criteria of MAF ≥ 0.05, genotyping rate > 45%, and Illumina Score ≥ 0.6 per SNP were selected. A total of 67 SNPs were identified within intronic, exonic, and untranslated regions of KRTAP genes. Among these, 35 SNPs were incorporated into the 76K Alpaca SNP microarray, with 32 SNPs subsequently validated in a population of 936 alpacas. In conclusion, our findings delineate SNPs within KRTAPs that hold potential utility in genome-wide association studies, thereby facilitating the integration of modern breeding technologies into alpaca breeding programs.

Keywords: Alpaca; single nucleotide polymorphism; KRTAP

Resumen

Este estudio tiene como objetivo identificar polimorfismos de nucleótido simple (PNSs) dentro de los genes KRTAP en alpacas (Vicugna pacos), que juegan un papel fundamental en la definición de sus propiedades físico-mecánicas y la calidad de la fibra de alpaca, producto principal de su crianza. Se investigaron treinta y cuatro genes KRTAP, tal como están anotados en el genoma de referencia VicPac3.1. Utilizando el genoma de referencia, junto con nueve genomas adicionales y lecturas de 300 bibliotecas de representación reducida de ADN de alpacas, se identificaron los PNSs. La frecuencia de los alelos menores (MAF) y las tasas de genotipificación se calcularon utilizando el software PLINK, mientras que los Illumina Score se determinaron para cada PNS utilizando el software Illumina Design Studio. Se seleccionaron marcadores que cumplían con los criterios de MAF ≥ 0.05, tasa de genotipado > 45% e Illumina Score ≥ 0.6 por PNS. Se identificaron un total de 67 PNSs dentro de regiones intrónicas, exónicas y/o no traducidas de genes KRTAP. Entre estos, se incorporaron 35 PNSs al microarray 76K Alpaca SNP, y posteriormente se validaron 32 PNSs en una población de 936 alpacas. En conclusión, nuestros hallazgos identificaron los PNSs dentro de los KRTAP que tienen una utilidad potencial en estudios de asociación de todo el genoma, facilitando así la integración de tecnologías de reproducción modernas en los programas de reproducción de alpacas.

Palabras Clave: Alpaca; polimorfismos de nucleótido simple, KRTAP

Introduction

The alpaca is one of the two domestic South American Camelids and is raised primarily for fiber production. Alpaca fiber is composed of alpha keratins and keratin-associated proteins (KAPs) (Powell & Rogers 1997). The latter are a complex group of proteins, which have high levels of cysteine, or glycine and tyrosine. It is hypothesized that these proteins play an important role in defining the physical-mechanical properties of the fiber, therefore sequence variation and variation in the expression of the genes encoding KAPs may be associated to variations in the quality of the fiber (Gong et al. 2012, Powell & Rogers 1997). KAPs are divided into two main groups, those with high sulfur content and those with high glycine and tyrosine content. The first group can be separated into two subgroups, high-sulfur proteins with less than 30% cysteine residues and very high-sulfur proteins with more than 30% cysteine residues (Gillespie & Broad 1972, Gillespie 1972).

The genetic improvement of alpacas through selective breeding is a subject of interest for breeders and the textile industry involved in alpaca fiber processing. Breeders aim to augment their revenue streams by augmenting both the quantity of fiber produced and diminishing the diameter of individual fleece fibers per sheared animal. Meanwhile, the textile industry endeavors to procure a larger supply of extra-fine and fine-quality fiber, which will subsequently be utilized in the fabrication of textiles with higher economic value in the market (Gutiérrez 2008).

Single nucleotide polymorphisms (SNPs) are characterized by single-base variances in the DNA sequence among individuals within a species. These molecular markers serve as indispensable tools in the genetic improvement of various animal species through genomic selection. SNPs hold significant value in association studies owing to their extensive variability and widespread distribution across the genome. Additionally, they play a crucial role in establishing kinship relationships, as the majority of SNPs exhibit uniqueness within a given population (Pierce 2006).

From previous studies on SNPs in alpacas, it is important to mention that according to Jones et al. (2019), the gray color in alpacas is the result of a SNP c.376G>A (p.Gly126Arg) located in exon 3 of the KIT gene. Likewise, Salas (2019) found 34 SNP-type variants in genes involved in the structure and development of alpaca fiber (KRT31, HOXC13 and EDAR); however, no association was found between the gene fragments analyzed and the diameter of the alpaca fiber. Foppiano (2016) identified 27 SNP markers in five genes of the keratin-associated protein family (KRTAP1-2, KRTAP6-1, KRTAP9-2, KRTAP11-1, KRTAP13-1), and conducted an association study between fiber diameter and two SNPs of the KRTAP11-1 gene but did not find a significant association in a sample of 152 white Huacaya alpacas from Puno (Peru). Fernandez et al. (2019) performing a bioinformatics analysis based on orthologous genes from sheep, goat, and human, identified 48 SNPs in 22 alpha keratin genes in alpacas. Finally, Calderon et al. (2021) reported the development of a 76k alpaca SNP microarray, which included 302 SNPs that were found in candidate genes for fiber quality and color.

The objective of this study was to identify single nucleotide polymorphism molecular markers within genes encoding keratin-associated proteins (KRTAPs) in alpacas. Quality parameters such as the absence of SNPs in the flanking sequence (70 bp), minor allele frequency, rate of samples with analyzed sequences, and Illumina Score were considered to identify reliable SNPs suitable for inclusion in an alpaca SNP microarray.

Material and methods

Genomic data. For sequence comparisons to identify SNPs we used the alpaca reference genome (VicPac3.1, GenBank accession number: GCA_000164845.4) and nine alpaca genomes available in NCBI. Three of these were generated by the Universidad Peruana Cayetano Heredia (Accession number: PRJNA340289) and six genomes by the Universidad Nacional Agraria La Molina (Accession number: PRJNA685331) (Anex 1). We also used sequence reads from 150 reduced representation DNA libraries with DNA fragments generated after digestion with the ApeKI enzyme and 150 generated after double digestion with the PstI and Msp enzymes (Calderon et al. 2021).

The sequences, number of exons and location (scaffold and chromosome) of 34 keratins associated proteins genes reported in alpacas were obtained from the NCBI. To determine the initial and final position of each exon, as well as of the introns and untranslated regions, the Sequence Viewer (https://www.ncbi.nlm.nih.gov/projects/sviewer/) was used.

Identification of single nucleotide polymorphisms. Having obtained the positions of each exon, a coordinate file (bed file) of the exons, introns, and untranslated regions (UTRs) of each gene was generated. To align the sequencing data of the nine alpaca genomes, referred to above, to the 300 alpaca reduced representation DNA libraries, also described above, and to the VicPac3.1 reference genome we used BWA v.0.7.10 (Li & Durbin 2010). While single nucleotide polymorphisms (SNPs) were identified using BCFtools (https://samtools.github.io/bcftools/bcftools.html),

Selection of SNPs. A reliable SNP should be devoid of other SNPs in its flanking sequences (35 bp 5’ of the SNP and 35 bp 3’ of the SNP, for a total of 71bp). Selection of SNPs for inclusion in a microarray requires a minor allele frequency (MAF) of ≥ 0.05 with a genotyping rate > 45 %, and an Illumina Score ≥ 0.6 (Laurie et al. 2010). The absence of SNPs within flanking regions was assessed by creating a vcf file with the genotype information using the KGD v0.8.2 software with default parameters (https://github.com/AgResearch/KGD). MAFs and genotyping rate for each SNP was calculated using the PLINK software and the Illumina Score was calculated using the Illumina Design Studio (https://designstudio-array.illumina.com). Thus 35 KRTAPs SNPs were included in the 76K alpaca SNP microarray (Calderon et al. 2021).

Validation of SNPs. The selected 35 KRTAPs SNPs were validated by genotyping 937 white Huacaya alpacas (58 males and 879 females) with the 76K alpaca SNP microarray. Genotyping was done at NEOGEN GeneSeek Laboratories (Nebraska, United States). For this study, only the genotyping results of SNPs located in KRTAPs were analyzed. Quality control was performed using the PLINK v1.90p program (Chang et al. 2015). Samples with a genotyping rate ≥ 90% and SNPs with a genotyping rate ≥ 90% were retained.

Results

The location and sequences of the 34 KRTAP genes annotated in the reference genome of alpacas were obtained, of which according to the classification of Gong et al. (2012), 19 are KRTAPs encoding high sulfur content proteins, 6 are KRTAPs encoding ultra-high sulfur content proteins, and 9 are KRTAPs encoding high glycine and tyrosine content proteins (Table 1).

Table 1 KRTAPs annotated in the reference VicPac 3.1 alpaca genome. 

A total of 67 SNPs were identified (Table 2), of which 48 are distributed in 18 KRTAPs encoding high sulfur content proteins, 8 in 5 KRTAPs encoding ultra-high sulfur content proteins, and 11 in 9 KRTAPs encoding high glycine and tyrosine content proteins.

Table 2: Location of keratin-associated protein genes (scaffold and chromosome), region and position (within the scaffold) of the SNP (within brackets and in red typo) and sequence of 71 bp of the SNP. HS: KRTAP encoding high sulfur content proteins. Chr: Chromosome. UHS: KRTAP encoding ultra-high sulfur content proteins. HGT: KRTAP encoding high glycine and tyrosine content proteins. 

Gene Group Scaffold Chr Position 71 bp sequence
KRTAP7-1 (LOC102544636) HGT ABRR03000004.1 1 12420218 TATGGCGGCAGCTTCTGCAGGCCATGGGGCTCCAG[C/G]TCTGGCTTTGGCTACAGCACCTTCTGATGGACCAA
KRTAP8-1 (LOC116280298) HGT ABRR03000004.1 1 12436062 ATGGCAGCACCTACTCCCCAGTGGGCTATGGCTTCGGCTA[T/C]GGCTACAACGGCTGTGGGGCTTTCGGCTACCGAAGATCCT
KRTAP8-1 (LOC116280298) HGT ABRR03000004.1 1 12436103 GGCTACAACGGCTGTGGGGCTTTCGGCTACCGAAGATCCT[G/A]CCCATTCTTTTTCTAGTGATTTGCTGAAATCCCCAAGGAG
KRTAP19-1L (LOC116276605) HGT ABRR03000004.1 1 12804959 GATTTTAGGAATATTTATGATTTCATAATTCTCTGCTTCATGTCTCTTATTTGTGCTTTC[A/G]TAACTGTGGCATTTCCCTATTCTTTTGCAATAAATTTCCCTAAGATAAAACAGCAtacat
KRTAP19-3L (LOC116280314) HGT ABRR03000004.1 1 12746893 CTGTGGCTATGGTTGCCTCCGAGGTCTGGGCTATGGCTACGGCGCTGGCTATGGTGGCTA[T/C]GGATACGGCTGCTACCGCCCGTGTTACTACGGAAGATACTTGTCCTCTGGCTTCTACTGA
KRTAP20-2L (LOC116286138) HGT ABRR03000004.1 1 12616128 TAGCCACAGCCTAGGCCACCATAGCCACAGCCATAACCATAGCCCAGGCCAC[C/T]GTAACCATAACCCAGACCTCCATAGTAGTTGCCGTAGTAGCACATGGTTTCA
KRTAP20-2L (LOC116286182) HGT ABRR03000004.1 1 12651734 ACCAGTATCTTCCATAGCAGCATGGGCGGTAGCAGGCATAGCCATAGCCAC[C/T]GTAGCCACATCCATAGCCACATCCCAGGCCACCATAGCCATAGCCCAGGCC
KRTAP20-2L (LOC116276588) HGT ABRR03000004.1 1 12660986 AGCCAGAAGACCAGTATCTTCCATAGCAGCATGGGCGGTAGCAGGCATAGCCATAGCCAC[C/T]GTAGCCACATCCATAGCCACATCCCAGGCCACCATAGCCATAGCCCAGGCCACCATAGTA
KRTAP20-2L (LOC116276577) HGT ABRR03000004.1 1 12678801 AGCAGCATGGGCGGTAGCAGGCATAGCCATAGCCACCGTAG[C/T]CACATCCATAGCCACATCCCAGGCCACCATAGCCATAGCCC
KRTAP21-1L (LOC116286002) HGT ABRR03000004.1 1 12501902 TTTGAGAAACCTCCTCTTTCAACCCACCTTAATTCACATCCT[T/C]TGACAACATGTGTTGCAACTACTATGGCAACTCCTGTGGCTA
KRTAP21-1L (LOC116286002) HGT ABRR03000004.1 1 12502328 TCCAAGAAATTACATGCCTGAAAGAAGGTTTGACCTCCAA[T/C]TACCCGGTTTTAGATTGGCATCTTTGTAGCCTGAGGCTCC
KRTAP4-1 (LOC102543867) UHS ABRR03077387.1 16 400197 GCCTGTGTGCTGCCAACCTACCTGCTGTCGCCCCAGGTGCTGCAACTCCAGCTGCTGCCG[C/G]CCCATCTGCTGAGGATCCTCTTTTTGCTGAACTTCATTCCTCACCACCAGCCCTGAGCCA
KRTAP4-1 (LOC102543867) UHS ABRR03077387.1 16 403985 ATTCTAacttttccatgttttaaatgaCCACCAAGTTTATTATCCTGTGACACTACCAAG[G/C]CACTGGAGAAAGAGCCTCCATCTGCGTTCAGTACCACCCCTGCTTCCCAGAAATCTCTTT
KRTAP4-1 (LOC102543867) UHS ABRR03077387.1 16 404135 GTTGGATCAAACCCCCAAGTCTCTGGCTGTTACACTTGCCTTGACCTTCATAACTGCATG[T/C]TAACTATTTCTCAATAATACTATCTTGATATCATAAATTTGTGTATCCTTCTTTACTTAT
KRTAP4-3L (LOC102529268) UHS ABRR03077387.1 16 500673 GCCAGACCAGCAGCTGTGAGACTGGCTGTGGCATTGGTGGTAGCA[T/C]TGGCTGTGGCCAGGAGGGTGGCAGCGGAGCTCTGAGCTGCCGCAC
KRTAP4-7L (LOC107032861) UHS ABRR03077387.1 16 411461 CAGGTGTGGTTCCAGCTGCTGCAGGCCCACCTGCTGCATCTCTAGCTGCT[G/A]TCGTCCCAGCTGCTACCAGACCACGTGCTGCCGCCCCAGATGCTGTGTGT
KRTAP9-2L (LOC102544126) UHS ABRR03077387.1 16 379872 CCACGTGCTGCCGCCCTAGCTGTGTGTCCAGCTGCTGCCAGCCCTCCTGCTGATCACCTC[A/T]CCAAGAGCCATCCCCTGCATCCAACACAATCTGTCAACTGAGTTGCCGTTTTGGGGGCAA
KRTAP9-4L (LOC102534338) UHS ABRR03001291.1 na 3527 CTGGTTACACAGGTAGGCTGGCAGCAGGTTTGTCCACAGCTGCTGG[A/G]CTCACAGCAGGTGGGCTGGCAGCAGGTGGTCACACAAGTAGGTTTG
KRTAP9-4L (LOC102534338) UHS ABRR03001291.1 na 3574 CTCACAGCAGGTGGGCTGGCAGCAGGTGGTCACACAAGTAGGTTTG[C/T]GGCAGGTGGTGCTGCAGCAGGTGGTCTGAGTAGCTTCATAGCAAGT
KRTAP3-1 (LOC102528725) HS ABRR03077387.1 16 514886 ATCAGTCTCCTTCAGCCTACCTGCTGCGACTGCTG[T/C]CCCCCACCCTGCTGTGAGCCTGACACCTACGTGCC
KRTAP3-3L (LOC102528468) HS ABRR03077387.1 16 526383 GATAAGTCCTGCCGGTGTGGAGTCTGCCTGCCCAG[T/C]ACCTGCCCACACACGGTTTGGTTACTGGAGCCAAC
KRTAP3-3L (LOC102528468) HS ABRR03077387.1 16 526561 TCACAACCTACActcagccctgctctgagccctgC[G/A]TCCCAAGATGCTGCTGACCGATGACTGCTTCGCTC
KRTAP3-3L (LOC102528209) HS ABRR03077387.1 16 532094 ATTCCCAAGGCCATGGCTTGCTGTGTTTCCTGCGA[C/T]GGCTGCAGTGTTCGCACCGGCCCCGCCACCACCAT
KRTAP3-3L (LOC102528209) HS ABRR03077387.1 16 532200 GCCTGCCCAGCACCTGCCCACACACGGTTTGGTTA[C/T]TGGAGCCAACCTGCTGTGACAActgccccccaccc
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12853114 aaaagatggcTGTACTGAGCAGAGACTTTGATCTCAATACTCAGAAGGATCTAGACCCTC[A/G]GCAAGTTGAATAATAGAAACCAGAGCTAGAGATTGGTCTATAACACGATGACTGGCAGCT
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12853197 GAGCTAGAGATTGGTCTATAACACGATGACTGGCAGCTGCTGGAGGTAAAGCAGGTTGGA[C/G]GGCAGAATCTGGATCCACAGCTCAGGGAGGGGAAGCCACAGACTCCATAACCCAGAGGTC
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888037 GCTGATCAATAGAAGCCAGACTGACAGGTTGGTCTGTAA[C/T]AGGATGATTGGCAGCTCCTAGGGGCAAAGTAGGTTGGAC
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888077 AGGATGATTGGCAGCTCCTAGGGGCAAAGTAGGTTGGAC[G/A]GTAGAAACCGAATCCATGGCTCAGAGGAGGGAAGCCACA
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888117 GTAGAAACCGAATCCATGGCTCAGAGGAGGGAAGCCACA[G/T]ACTCCACAGCCCAGGGGTCTGAAGCCATGGGACCCAAAG
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888170 ACTCCACAGCCCAGGGGTCTGAAGCCATGGGACCCAAAGCCCAGTGAGTAGC[A/G]GCTTCTGGACCCAGCGCCCAGGAAGCAGCCTCTTCCGGACCCAGAGCCTGGA
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888236 GCCTCTTCCGGACCCAGAGCCTGGAGACCTAGCATAAG[T/C]TTTCTGGAAGGGACTGCAGAGCATGGAGGTCCTTGGGC
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888275 TTTCTGGAAGGGACTGCAGAGCATGGAGGTCCTTGGGC[G/A]GTAGCAGGATGTCTGGCAGGGGCTGGATACCACATAAG
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888315 GTAGCAGGATGTCTGGCAGGGGCTGGATACCACATAAGA[C/T]GTCTGGCACCTGATAGGCTTACAACAGGTCTCCTGACAG
KRTAP10-1L (LOC107034113) HS ABRR03000004.1 1 12888357 GTCTGGCACCTGATAGGCTTACAACAGGTCTCCTGACAGCC[G/A]CTGTGAAGAGAGGAGTCCTGctggcaggtgctgggagagca
KRTAP10-10 (LOC116284217) HS ABRR03077307.1 18 8124973 GCCTCAACTGTCTCTGCTTTGAGATCAAGCTCCGATGATGACCCAGTGTCCCTGCCCCTT[G/T]GGGGAGCGGCCACCCCCCGGGGCCCACATGCCCTGTTCCCTGAGGGGCCTCAGGACACCT
KRTAP11-1 (LOC102544905) HS ABRR03000004.1 1 12376109 ACATGTCCTACAACTGCTCCACAAGGAATTGCTCT[T/G]CCAGGCTGATTGGGGGACAATACTCTGTCCCCGTG
KRTAP12-1L (LOC102528691) HS ABRR03009911.1 na 764 GAGGACTGGCGGGAGGGGGCCACACACACAGGGGCTTGCAGCTCACGGGCAGGCG[C/T]GTGGTCAGCTTGCAGCTCACAGGCACGCACACGACAGGCCTGCGGCTCAGTGACA
KRTAP12-1L (LOC116283958) HS ABRR03000004.1 1 3777628 TGAGGAGCCCAACCCTGCGGAAGAACCTCCTGGATCAC[C/T]GAGTTTCCGCATCAAAGTTGGGGACGCTGTGCTTGTGC
KRTAP12-2L (LOC116280071) HS ABRR03000004.1 1 3775478 CCTGCCGGAGACAGAGAGGGACCCTGGGAACCAGGGCTTCCAGAGGAGATGCGCAGATTC[A/G]TAGAAAGATCCAGATCGTCCTGCCACGCTCTTGCCCCAGAGTTCAGAGGGTTGGTTCATC
KRTAP12-2L (LOC102530622) HS ABRR03001991.1 na 807 acaatacttcaataaaaaaataagaattaaaaaaaatggagggacACACTCCATTGAGAA[A/T]GCATGATTTATTTGTCACACATGGGATGTGGCTTCCTGCCGGAGACAGAGAGGGACCCTG
KRTAP12-2L (LOC102530622) HS ABRR03001991.1 na 902 CCTGCCGGAGACAGAGAGGGACCCTGGGAACCAGGGCTTCCAGAGGAGATGCGCAGATTC[A/G]TAGAAAGATCCAGATCGTCCTGCCACGCTCTTGCCCCAGAGTTCAGAGGGTTGGTTCATC
KRTAP12-2L (LOC102530622) HS ABRR03001991.1 na 1519 CTTAGGGCTGGGCTGGCGTCGGGAGGAGGGCGGTGATGTCTGCAGCCTCCCTGCCCGGGC[G/T]GCCTTTATACCCGGGCCGTGGGCGTCCCAGCAGCACAGAAGCTCACCTGCTGACTTCCTC
KRTAP13-1L (LOC102533350) HS ABRR03000004.1 1 12923762 TGCTGCTCTGGAaacttctcctcctgctcccttgg[G/A]GGCCACTTGCACTACCCAAGCTCTTCCTGTGGCTC
KRTAP13-1L (LOC102533350) HS ABRR03000004.1 1 12923825 TGTGGCTCCTCCTACCCCAGCAACCTGATCTACAC[T/C]ACGGAcctctgctctcccagcacctgccagCTGAG
KRTAP13-1L (LOC102533350) HS ABRR03000004.1 1 12923905 GTACAGTGGCTGTCAGGAGACCTGCTGGGAGCCCA[C/G]CAGGTGCCAGATGTCCCATGGTGTGTCCAGCCCCT
KRTAP13-1L (LOC102533350) HS ABRR03000004.1 1 12924045 CTCTGGGCTCTGGGTCCGGCAAAGGCTACTTCCTG[G/T]TCTATGGATCCAGAAGCTGTGGGTCCAGTGGATCT
KRTAP13-1L (LOC102532866) HS ABRR03000004.1 1 12846534 TACCGCTGGAAGACCTCCACGCTCTGCCGTCCCTG[G/C]CAGACGACTTACTCTGGGTCTCTGGGCTTTGGCTC
KRTAP13-1L (LOC102532037) HS ABRR03000004.1 1 12859532 GTCAGGAGACCAGCTGTGAGCCTATCAGATGCCAG[G/T]CATCCTGCTGCCCCCAGAGGACCTCCAAGCTCTGC
KRTAP13-1L (LOC102532037) HS ABRR03000004.1 1 12859761 TGGGTCCAATTTCTGGTACCCAATCAACTTTCCTT[C/G]CAGAAGTTTCTGTTCATCTTGTTACTGGCCAATTT
KRTAP16-1 (LOC102544939) HS ABRR03077387.1 16 353702 AGGGCCTGTTTGCCTGCCCAGTTCCTGCCGGAGCC[G/A]GACTTGGCAACTGGTGACTCAAGATAGCTGCAGAT
KRTAP16-1 (LOC102544939) HS ABRR03077387.1 16 354957 AGTGTGCCCCACGCCTAGCTGCTGTTCATCTGTCC[G/A]CTCCGTGGCCAATGGCCGCCAGTCTGTCTGCTGTG
KRTAP16-1 (LOC102544939) HS ABRR03077387.1 16 355358 CCGTCTACCTCGTGCCGACCTCTCTGCTGCCGCCCAGGGTCTTCTGCATCTGTCATCTGC[C/A]GGCCAATTTGCTCTCGAACTTTCTACATACCCAGCTCCTGCAAACAACCATGCACTCCTT
KRTAP16-1 (LOC102544939) HS ABRR03077387.1 16 355869 CTGCAGTGCACGCCTCTGACTACAGAGAAAATGTGACTGCCCTCCCCAAAGCTCATCTGA[C/T]ttagaatctttttctttctgcactATCACTCACCATCTGCTTATGCTTCAAAGAACTCAC
KRTAP24-1 (LOC102532787) HS ABRR03000004.1 1 12979560 ATATGCTACAGAACCCACTGTATTATCCCAGTGAC[T/G]CCTTCTGTTGCTCTTTGCTCCAGCGATGTAAGCCC
KRTAP24-1 (LOC102532787) HS ABRR03000004.1 1 12979659 TACCAAGGAACTCTCTGGCTTCTGGATAACTGCCA[A/T]GAAACCTGTGGTGAAGCACCAATCTGTGAATCTCC
KRTAP24-1 (LOC102532787) HS ABRR03000004.1 1 12979802 AGTGGGCAAAATACGCAGTGCCTGTGAAACTACCA[A/G]TGTCGGACCCAGCCCCAGCTGCAACCCATGCACTC
KRTAP24-1 (LOC102532787) HS ABRR03000004.1 1 12980054 CATACCAAATGGCTTCTCACCCTCATCTTGTATTG[C/T]CAACAGCTGCCGATTCCaaaattatttaagaagaa
KRTAP26-1 (LOC107034115) HS ABRR03000004.1 1 12947455 CTCCGGAAATCTCTGTCatatttctcttccctcctccattGCCCTCTGC[T/C]CTACCAATGTGAGCTGTGGAGATGTCCTCTGCTTGCCCAGCAGCTATCC
KRTAP26-1 (LOC107034115) HS ABRR03000004.1 1 12947628 AGCCACCTGGGAGCCCAGCCTCTGTGAGACTTCCAGCTGCCCTTCCACTGCTTGCTATGT[G/T]CCCAGACCCTGCCAAGGGACCAACCTTCTTCCTGCTTCTTACAtctctggctcctgcctc
KRTAP26-1 (LOC107034115) HS ABRR03000004.1 1 12947708 CTTCCTGCTTCTTACAtctctggctcctgcctcccagtgTCCTGCAGACCTC[T/A]GAGCTATGCGTCCAGCAGCTGCCGACCCCTGAGCCTCCTCACCTATGGATGC
KRTAP26-1 (LOC107034115) HS ABRR03000004.1 1 12947881 ACCTCTGCGTCCTCTCTTCAGTGGATGCCAACCTCTGACACAAGTGTTCAGTCCTTGT[C/T]GTCCATCCTGCTCTGCATTGGGAGGCCAGTAGCTTCCTTGTTCCAGCTAATAATCATG
KRTAP27-1 (LOC102533595) HS ABRR03000004.1 1 12931105 ggattttttttaccCAGCAGCTGCCACAGTAGGAC[C/T]TGGCTCCTGGACAACTTTCAAGAAACCTGTTGTGA
KRTAP27-1 (LOC102533595) HS ABRR03000004.1 1 12931214 TGTCCACAGGGGATAGCTGTGTGCAAACTGCCTGC[C/G]TCCCCCGAGTTGTCCAAACGAATTGTTCTAATTCC
KRTAP27-1 (LOC102533595) HS ABRR03000004.1 1 12931576 ACTTATGAGCCAACTTGCTGTGTTACTGGTGGTTT[G/A]CAGTTGCCTAGTGAATgaagaatgtgaaaaatgtg
KRTAP29-1 (LOC102544666) HS ABRR03077387.1 16 361421 CTGCCAATCAACTTATTACCAACCTGTCTGCTACTTTTTTAAGTCTTGTCAATCAGTTCC[C/T]TGCGTGCCTGTGCCCCACCAGCTGTGTCcttgtgttttctgttcttgCAATCCTGCTTGC
KRTAP29-1 (LOC102544666) HS ABRR03077387.1 16 361604 CCAGCCAGTGGCTAACCCTTGTTCTGTAAAGAACCCTTGCAAACCAGCTTCCTGCAGCAC[C/T]GTCCCTTCTGGCCAACCAACTTGTGGTGAACCTACTTCCTGCAATCAAAGTGCCTGCAAA
KRTAP29-1 (LOC102544666) HS ABRR03077387.1 16 361748 CTGTGTGACAGGTTCTGGCAAATCATCCAGTGGAGGTTCCAATCGCTTCCGAACCACTGC[T/C]CCAAGTCTGCCAGGCCAGCACCTGCTAGCCAACTTCCTGCCAACCCAGCCAGGAGTCCAG

Table 3 shows the results of the validation of 35 SNPs in 937 alpacas that were genotyped. After quality control, 936 alpacas and all SNPs were retained. Three SNPs were monomorphic (MAF=0), nine had MAFs between 0.006 and 0.049, and 23 had MAFs ≥ 0.05.

Table 3 Validation results for the 35 KRTAP gene SNPs included in the alpaca microarray. 

Gene Scaffold Scaffold position MAF
KRTAP10-1L (LOC107034113) ABRR03000004.1 12853197 0.03472
KRTAP10-1L (LOC107034113) ABRR03000004.1 12853114 0.06624
KRTAP10-1L (LOC107034113) ABRR03000004.1 12888170 0.1977
KRTAP11-1 (LOC102544905) ABRR03000004.1 12376109 0.4764
KRTAP13-1L (LOC102532037) ABRR03000004.1 12859761 0.03636
KRTAP13-1L (LOC102533350) ABRR03000004.1 12924045 0.02724
KRTAP13-1L (LOC102533350) ABRR03000004.1 12923762 0.05609
KRTAP13-1L (LOC102533350) ABRR03000004.1 12923825 0.3223
KRTAP19-1L (LOC116276605) ABRR03000004.1 12804959 0.01389
KRTAP19-3L (LOC116280314) ABRR03000004.1 12746893 0.03904
KRTAP20-2L (LOC116276588) ABRR03000004.1 12660986 0
KRTAP24-1 (LOC102532787) ABRR03000004.1 12979659 0.0187
KRTAP24-1 (LOC102532787) ABRR03000004.1 12980054 0.1534
KRTAP24-1 (LOC102532787) ABRR03000004.1 12979560 0.1629
KRTAP24-1 (LOC102532787) ABRR03000004.1 12979802 0.2198
KRTAP26-1 (LOC107034115) ABRR03000004.1 12947628 0.295
KRTAP8-1 (LOC116280298) ABRR03000004.1 12436103 0.4618
KRTAP12-2L (LOC102530622) ABRR03001991.1 807 0.296
KRTAP12-2L (LOC102530622) ABRR03001991.1 902 0.3007
KRTAP12-2L (LOC102530622) ABRR03001991.1 1519 0.3331
KRTAP10-10 (LOC116284217) ABRR03077307.1 8124973 0
KRTAP16-1 (LOC102544939) ABRR03077387.1 354957 0.006417
KRTAP16-1 (LOC102544939) ABRR03077387.1 355358 0.08333
KRTAP16-1 (LOC102544939) ABRR03077387.1 355869 0.2449
KRTAP29-1 (LOC102544666) ABRR03077387.1 361604 0.1487
KRTAP29-1 (LOC102544666) ABRR03077387.1 361421 0.1496
KRTAP29-1 (LOC102544666) ABRR03077387.1 361748 0.4322
KRTAP3-3L (LOC102528209) ABRR03077387.1 532094 0.007479
KRTAP3-3L (LOC102528209) ABRR03077387.1 532200 0.06912
KRTAP3-3L (LOC102528468) ABRR03077387.1 526383 0.3525
KRTAP4-1 (LOC102543867) ABRR03077387.1 404135 0.09936
KRTAP4-1 (LOC102543867) ABRR03077387.1 400197 0.3979
KRTAP4-1 (LOC102543867) ABRR03077387.1 403985 0.4995
KRTAP4-7L (LOC107032861) ABRR03077387.1 411461 0.04011
KRTAP9-2L (LOC102544126) ABRR03077387.1 379872 0

Discussion

Sixty-seven SNPs were identified for the 34 KRTAPs genes that are annotated in the alpaca reference genome. Of these, 35 SNPs are included in the 76K alpaca SNP microarray (Calderon et al. 2021) and 32 were confirmed as true SNPs and three were monomorphic in the alpaca population that was analyzed. These 32 validated SNPs are localized in 14 KRTAP genes. The three monomorphic SNPs indicate that the polymorphisms identified are not present in the alpaca population used for our analysis and/or are of low frequency in general. The latter can be true for any SNP because their frequencies will vary depending upon the sample populations being analyzed unless their frequencies are closer to 50%.

The constraints of this study lie in the potential for gene locations to shift with advancements in the alignment of the reference genome utilized. Furthermore, enhancing genome assembly is imperative for accurately determining the physical locations of genes and, consequently, single nucleotide polymorphisms (SNPs). Additionally, the presence of sequencing errors in the genomes and reduced libraries are plausible. Utilizing libraries is crucial as it ensures that sequenced fragments possess adequate repetitions, thereby facilitating the generation of a more robust consensus sequence.

In the KRTAP11-1 gene, a single nucleotide polymorphism (SNP) (g.12376109T>G) was detected, consistent with SNP33 as identified by Foppiano (2016). Foppiano (2016) additionally documented five additional SNPs within the same gene, though these variants showed no association with fiber diameter. Our study, however, did not detect all of the SNPs reported by Foppiano (2016), possibly due to our stringent filtering criteria based on quality parameters outlined earlier. Foppiano (2016) employed only allele frequency as a filtering criterion.

The KRTAP13-1 gene consists of three copies (LOC102533350, LOC102532866, LOC102532037). The SNP (g.12846534G>C) identified within KRTAP13-1 (LOC102532866) matches the one reported by Foppiano (2016), who noted its conversion from Tryptophan to Cysteine in the protein sequence, a finding consistent with our study's results. Notably, Foppiano (2016) aligned the alpaca genome (Vicugna-Pacos 2.0.1) with the human KRTAP13-1 gene sequence to ascertain the identified alpaca gene sequence. Moreover, Foppiano (2016) identified three additional SNPs within the same LOC102532866 sequence that our study did not detect due to stringent quality SNP identification filters. However, our study successfully identified SNPs within all three copies of the KRTAP13-1 gene as annotated in the NCBI. We identified four SNPs in LOC102533350, two of which are non-synonymous, resulting in alterations in the protein sequence from Threonine to Serine (g.12923905C>G) and Valine to Phenylalanine (g.12924045G>T). Similarly, we observed two SNPs in LOC102532037 leading to changes in the protein sequence, from Alanine to Serine (g.12859532G>T) and Serine to Cysteine (g.12859761C>G). In goats, Fang et al. (2010) identified a SNP (T>G) within the gene's coding region, significantly associated with fiber diameter in Xinjiang (cashmere) breed goats. In our study, we identified a G>T SNP at positions 12924045 and 12859532 of the same gene. We recommend employing these SNPs within KRTAP13-1 (LOC102533350) for association analyses with fiber characteristics in alpacas.

In KRTAP24-1 gene, four SNPs were identified and validated, three of which are non-synonymous SNPs. One produces a change from Alanine to Valine (g.12980054C>T), which is similar to the SNP (c.656T/C) identified by Wang et al. (2019) in goats. This SNP causes a change of Valine to Alanine in the protein sequence and was reported to affect the fiber diameter in cashmere goats, while the other two changed Glycine to Histidine (g.12979659A>T) and Asparagine to Serine (g.12979802A>G) were not reported in previous studies in other species. The fourth SNP identified in this study is synonymous (g. 12979560 T>G). However, it would be important to consider all of them for an association study analysis on fiber characteristics in alpacas.

For the KRTAP26-1 gene, four SNPs were identified, one synonymous that was validated and three non-synonymous, not validated, that produce the following changes in the protein sequences, Serine to Proline (g.12947455T>C), Leucine to Glutamine (g.12947708T>A), and Arginine to Cysteine (g.12947881C>T), respectively. Similarly, Li et al. (2017) identified four SNPs in this gene but the one that was associated with lower mean wool diameter, standard deviation of wool diameter, mean comfort factor, and higher wash performance in Merino x Southdown sheep (c.277A/G) changes Serine to Glycine, was not found in our study. Again, it would be important to analyze the association with fiber characteristics of these SNPs in alpacas.

A single nucleotide polymorphism (SNP) within the untranslated region (UTR) of the KRTAP9-2 gene was identified. Additionally, Foppiano (2016) reported a SNP in the 3'UTR; however, the former SNP was excluded from further analysis due to its failure to meet the allelic frequency criterion (≥ 5%), while the latter SNP was not detected in our study. Foppiano (2016) also noted two additional SNPs within the exonic region, which were not included in our analysis due to their failure to meet the quality parameters required for inclusion in the 76K SNP microarray. In studies involving cashmere-producing goats, Yu et al. (2008) identified a 30-nucleotide insertion/deletion variation in the exon of the KRTAP9-2 gene, while Wang et al. (2012) identified a C/T SNP variation in the same gene. Furthermore, in a separate investigation, Wang et al. (2014) conducted a gene expression profiling study across different phases of the fiber cycle, revealing significant differences in the expression levels of this gene between goats exhibiting high and low production of cashmere fiber. Consequently, further investigation into the presence of additional molecular markers, such as insertion/deletion mutations, remains warranted in alpacas.

In the single exon of the KRTAP7-1 gene, we found a non-synonymous SNP that changes a Serine to Arginine (g.12420218C>G), comparatively, Liu et al. (2014) identified a non-synonymous SNP in Chinese merino sheep, but this changed Asparagine to Lysine in the protein sequence. In Liaoning goats, Jin et al. (2011) found that the expression of this gene was 1.28 times higher in secondary follicles than in primary follicles, suggesting that it probably plays an important role in regulating fiber diameter.

For the KRTAP8-1 gene, we found two SNPs, one synonymous (g.12436062T>C) and the other non-synonymous (g.12436103G>A), unlike Liu et al. (2011), who found two SNPs in goats, but both were synonymous mutations, and one (T113G) was significantly associated with cashmere fleece weight, but not with fiber diameter. Our non-synonymous SNP is included in the 76K alpaca SNP chip and would be important to consider it for association studies with fiber characteristics.

For the KRTAP20-2 gene, we identified five SNPs, one of which is non-synonymous and changes an Alanine to Valine (g.12678801C>T), while the other four identified SNPs are synonymous. Bai et al. (2018) also reported a non-synonymous SNP (c.160A>T), it generates a premature terminal codon associated with mean diameter and wool curvature in sheep (Merino x Southdown).

In the single exon of the KRTAP21-1 gene we did not find any exonic SNPs, while Li et al. (2019) reported four exonic SNPs in Merino x Southdown lambs and found one associated with a positive variation in wool washing performance. However, two SNPs were identified in the UTR of the KRTAP21-1 gene, which might be involved in gene expression regulation.

The validation study of 35 out of the 67 identified SNPs in KRTAP genes was conducted successfully, as they were incorporated into the 76K alpaca SNP microarray. Alternative approaches will be employed to validate the remaining SNPs, such as gene sequence comparisons among genomes as they become accessible (Foppiano 2016, Palloti et al. 2023).

To summarize, 32 out of the 67 identified SNPs have been validated in a population of 936 white Huacaya alpacas. While the incorporation of these SNPs into the 76K alpaca SNP chip will aid in elucidating their association with fiber characteristics, it is equally imperative to explore the biochemical attributes of these proteins and their follicular expression levels in alpacas in future whole-genome association studies.

Agradecimientos / Acknowledgments:

We would like to acknowledge Bioinformatic high-performance computing server at UNALM.

Literature cited

Bai L, Gong H, Zhou H, Tao J, Hickford JGH. 2018. A nucleotide substitution in the ovine KAP20-2 gene leads to a premature stop codon that affects wool fibre curvature. Animal Genetics, 49(4), 357-358. https://doi.org/10.1111/age.12668 [ Links ]

Calderon M, More MJ, Gutierrez GA, Ponce de León FA. 2021. Development of a 76k Alpaca (Vicugna pacos) Single Nucleotide Polymorphisms (SNPs) Microarray. Genes, 12(2): 291. https://doi.org/10.3390/genes12020291 [ Links ]

Chang C, Chow C, Tellier L, Vattikuti S, Purcell S, Lee J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets (en línea). GigaScience 4(1):7. https://doi.org/10.1186/s13742-015-0047-8. [ Links ]

Fang Y, Liu W, Zhang F, Shao Y, Yu S. 2010. The polymorphism of a novel mutation of KAP13.1 gene and its associations with cashmere traits on Xinjiang local goat breed in China. Asian Journal of Animal and Veterinary Advances 5(1): 34-42. http://dx.doi.org/10.3923/ajava.2010.34.42 [ Links ]

Fernández A, Gutiérrez G, Ponce de León FA. 2019. Identificación bioinformática de Polimorfismos de Nucleótido Simple (PNSs) en genes candidatos para las características de la fibra en alpacas (Vicugna pacos). Revista Peruana de Biología 26(1): 87-94. http://dx.doi.org/10.15381/rpb.v26i1.15911 [ Links ]

Foppiano F. 2016. Caracterización de marcadores genéticos en genes que codifican a proteínas asociadas a queratina y evaluación de la asociación del gen KRTAP11-1 al diámetro de fibra en alpaca (Vicugna pacos) siguiendo una aproximación de gen candidato. Tesis Magister en Bioquímica y Biología Molecular. Universidad Peruana Cayetano Heredia, Lima, Perú. [ Links ]

Gillespie JM. 1972. Proteins rich in glycine and tyrosine from keratins. Comparative biochemistry and physiology. Comparative Biochemistry, 41(4):723-34. [ Links ]

Gillespie JM, Broad A. 1972. Ultra-high-sulphur proteins in the hairs of the artiodactyla. Australian journal of biological sciences, 25(1): 138-45. [ Links ]

Gong H, Zhou H, Mckenzie G, Yu Z, Clerens S, Dyer J, Plowman J, Wright M, Arora R, Bawden C, Chen Y, Li J, Hickford J. 2012. An updated nomenclature for keratin-associated proteins (KAPs). International Journal of Biological Sciences 8 (2), 258-264. http://dx.doi.org/10.7150/ijbs.3278 [ Links ]

Gutiérrez G. 2008. Revisión de la estimación de los parámetros genéticos en alpacas. En: E. Quispe, J. Mueller, J. Ruíz, L. Alfonso, G. Gutiérrez, eds. Actualidades sobre adaptación, producción, reproducción y mejora genética en Camélidos. Huancavelica, Perú: Universidad Nacional de Huancavelica. Pp.124. [ Links ]

Jin M, Wang L, Li S, Xing M, Zhang X. 2011. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding Cashmere goat hair follicle. Molecular Biology Reports 38: 3023-3028. http://dx.doi.org/10.1007/s11033-010-9968-6 [ Links ]

Jones M, Sergeant C, Richardson M, Groth D, Brooks S & Munyard K. 2019. A non-synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos). Animal Genetics 50: 493-500. http://dx.doi.org/10.1111/age.12814 [ Links ]

Laurie C, Doheny K, Mirel D, Pugh E, Bierut L, Bhangale T, Boehm F, Caporaso N, Cornelis M, Edenberg H, Gabriel S, Harris E, Hu F, Jacobs K, Kraft P, Landi M, Lumley T, Manolio T, McHugh C, Painter I, Paschall J, Rice J, Rice K, Zheng X, Weir B, GENEVA Investigators. 2010. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol., 34(6):591-602. https://doi.org/10.1002/gepi.20516. [ Links ]

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26. https://doi.org/10.1093/bioinformatics/btp698 [ Links ]

Li S, Zhou H, Gong H, Zhao F, Hu J, Luo Y, Hickford JGH. 2017. Identification of the ovine keratin-associated protein 26-1 gene and its association with variation in wool traits. Genes, 8(9). https://doi.org/10.3390/genes8090225 [ Links ]

Li S, Zhou H, Gong H, Zhao F, Wang J, Liu X, Hu J, Luo Y, Hickford JGH. 2019. Identification of the ovine keratin-associated protein 21-1 gene and its association with variation in wool traits. Animals, 9(7). https://doi.org/10.3390/ani9070450 [ Links ]

Liu H, Yue C, Zhang W, Zhu X, Yang G, Jia Z. 2011. Association of the KAP 8.1 Gene Polymorphisms with Fibre Traits in Inner Mongolian Cashmere Goats. Asian-Australasian Journal of Animal Sciences 24(10):1341-1347. http://dx.doi.org/10.5713/ajas.2011.11120 [ Links ]

Liu Y, Shi G, Wang H, Wan P, Tang H, Yang H & Guan F. 2014. Polymorphisms of KAP6, KAP7 and KAP8 genes in four Chinese sheep breeds. Genetic and Molecular Research 13: 3438-45. http://dx.doi.org/10.4238/2014.April.30.5 [ Links ]

Pallotti S, Picciolini M, Antonini M, Renieri C, Napolioni V. 2023 Genome-wide scan for runs of homozygosity in South American Camelids. BMC Genomics 24, 470. https://doi.org/10.1186/s12864-023-09547-3 [ Links ]

Pierce B. 2006. Genética: Un enfoque conceptual. Editorial Panamericana. 915 pp. [ Links ]

Powell BC, Rogers GE. 1997. The role of keratin proteins and their genes in the growth, structure and properties of hair. Exs78: 59-148. http://dx.doi.org/10.1007/978-3-0348-9223-0_3 [ Links ]

Salas W. 2019. Caracterización de marcadores moleculares de genes involucrados en la estructura y desarrollo de la fibra de alpaca y su potencial asociación con el diámetro de la fibra. Tesis para optar el Grado Académico de Doctor en Ciencias Biológicas. Universidad Nacional Mayor de San Marcos, Lima, Perú. [ Links ]

Wang J, Zhou H, Luo Y, Zhao M, Gong H, Hao Z, Hu J, Hickford J. 2019. Variation in the Caprine KAP24-1 Gene Affects Cashmere Fibre Diameter. Animals 9(1): 15. http://dx.doi.org/10.3390/ani9010015 [ Links ]

Wang X, Zhao Z, Xu H, Qu L, Zhao H, Li T, Zhang Z. 2012. Variation and expression of KAP9. 2 gene affecting cashmere trait in goats. Molecular biology reports 39(12), 10525-10529. [ Links ]

Wang X, Xu H, Li T, Qu L, Zhao Z, Zhang Z. 2014. Expression analysis of KAP9.2 and Hoxc13 genes during different cashmere growth stages by qRT-PCR method. Molecular biology reports 41(9). http://dx.doi.org/10.1007/s11033-014-3435-8. [ Links ]

Yu H, Wang X, Chen H, Wang M, Zhao M, Lan X, Lei C, Wang K, Lai X, Wang X. 2008. The polymorphism of a novel 30bp-deletion mutation at KAP9.2 locus in the Cashmere goat. Small Ruminant Research 80(1): 111-115. http://dx.doi.org/10.1016/j.smallrumres.2008.09.010 [ Links ]

Rol de los autores / Authors Roles: FAPL: Conceptualization, supervision, funding acquisition, writing-review and editing. GG: Conceptualization, supervision, funding acquisition. DF: formal analysis and writing-original draft preparation, writing-review and editing. MM: formal analysis and writing-original draft preparation.

Fuentes de financiamiento / Funding: The study was supported by PNIA through project 028-2016 INIA PNIA-UPMSI-IE and VLIR-UOS funding to the UNALM (IUC) program

Aspectos éticos / legales; Ethics / legals: Authors declare that they did not violate or omit ethical or legal norms in this research

Citación: Figueroa D, More M, Gutiérrez G, Ponce de León FA. 2024. Bioinformatic identification of Single Nucleotide Polymorphisms (SNPs) in keratin-associated protein genes in alpacas (Vicugna pacos). Revista peruana de biología 31(1): e24889 - 000 (Marzo 2024). doi: https://dx.doi.org/10.15381/rpb.v31i1.24889

Supplementary Materials

Table S1: Run Accession Number. 

Bioproject Accession Number Run Accession Number
PRJNA340289 SRR4095109
PRJNA340289 SRR4095110
PRJNA340289 SRR4095135
PRJNA685331 SRR13340600
PRJNA685331 SRR13340601
PRJNA685331 SRR13340602
PRJNA685331 SRR13340603
PRJNA685331 SRR13340604
PRJNA685331 SRR13340605

Received: March 06, 2023; Accepted: January 10, 2024

*Corresponding author deyanirafigueroa66@gmail.com

Conflicto de intereses / Competing interests: The authors declare no conflict of interest

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License