SciELO - Scientific Electronic Library Online

vol.6 issue4Maximizing content of Omega-3 (EPA and DHA) in the process of enzymatic acidolysis of canola oil and concentrated of long-chain polyunsaturated fatty acids (LCPUFA) in supercritical CO2 conditionsOccurrence of Argyrotaenia sphaleropa Meyrick (1909) (Lepidoptera: Tortricidae) in Caesalpinia spinosa (Molina) Kuntze Britton & Rose (1824) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO


Scientia Agropecuaria

Print version ISSN 2077-9917

Scientia Agropecuaria vol.6 no.4 Trujillo Oct. 2015 


Does fruit cooling and seed film coating affect the germination potential of physalis?
¿El enfriamiento de los frutos y el recubrimiento de película de las semillas afecta al potencial de germinación de la uchuva?

Aniela Pilar Campos de Melo1,*; Carlos de Melo e Silva-Neto1; Alexsander Seleguini1; Paulo Marçal Fernandes2

1 Federal University of Goiás, Horticulture Sector, Goiânia, Goiás, Brazil.

2 Federal University of Goiás, Phytosanitary Sector, Goiânia, Goiás, Brazil.


Physalis (Physalis peruviana L.) is a native fruit of the Andes widely accepted in the national and international market. The berries have high commercial value, being very nutritious and tasty. Physalis cultivation in Brazil is currently expanding mainly southwards. Seeds carry out propagation. However, information concerning factors that could affect germination viability are scarce. Thus, the goal of this study was to assess the effects of storage and of film coating on the germination potential of physalis seeds. The experimental design was completely randomized in a 2x3 factorial, considering two fruit storage conditions (environment and cooling) x and three coating polymers to film-coat the seeds (Blue AG L-204® DISCO, Red AG L-203®DISCO, water), with five replications and one hundred seeds per plot. Germination was evaluated seven, 14 and 21 days after sowing to calculate the germination rate index. The physalis fruit cold storage for seven days does not affect the germination viability of the seeds. Seed coating increases the germination percentage and speed.
Keywords: Physalis peruviana L., cape gooseberry, physiological potential, coating polymers, storage.


La uchuva (Physalis peruviana L.) es una fruta nativa de los Andes con gran aceptación en el mercado nacional e internacional. Las bayas tienen un alto valor comercial, siendo muy nutritivo y sabroso. El cultivo de la uchuva en Brasil se está expandiendo principalmente en el Sur. La propagación se realiza a través de semillas, sin embargo, en relación con la información sobre los factores que pueden afectar a la viabilidad de la germinación son escasos. El objetivo de este estudio fue evaluar los efectos de almacenamiento y recubrimiento de película sobre el potencial de germinación de semillas de uchuva. Se utilizó un diseño completamente aleatorizado, en el diseño factorial 2x3, con dos condiciones de almacenamiento de frutas (ambientales y refrigeración) x tres polímeros para recubrimiento de película de semillas (Disco Azul AG L-204®, Disco Rojo AG L-203®, agua), con cinco repeticiones y cien semillas por parcela. Se evaluó la germinación a 7, 14 y 21 días después de la siembra para el cálculo de la velocidad del índice de germinación. El almacenamiento en frío de las frutas en siete días no afecta a la viabilidad de la germinación de las semillas. El recubrimiento de semillas aumenta el porcentaje y la velocidad de la germinación.

Palabras clave: Physalis peruviana L., uchuva, potencial fisiológico, polímeros de recubrimiento, almacenamiento.

1. Introduction

The genus Physalis belongs to the family Solanaceae and has over 100 annual or perennial species, highlighting Physalis peruviana L. (Yildirim et al., 2011). P. peruviana is native to the Andes, and is known as uchuva and cape gooseberry (Puente et al., 2011). Colombia is the largest producer of physalis, and 50% of the production is exported to several countries, including Brazil (Bravo et al., 2014). Is a fruit with high commercial value, and a high acceptance in the national and international market (Ianckievicz et al., 2013).

The physalis plant is perennial, rustic and shrub sized. The fruit is an ovoid aromatic berry enveloped by a calyx that provides fruit protection from insects, birds, diseases and adverse weather (Puente et al., 2011; Valdenegro et al., 2012; Lima et al., 2012).

The physalis berries are consumed fresh or processed (Erkaya et al., 2012) and have high K+, Ca2+, Mg2+, Fe2+ (Rodríguez et al., 2009), and bioactive substances (Rutz et al., 2012; Rop et al., 2012; Namiesnik et al., 2013), such as phytosterols, polyphenols, physalins and high vitamins content (Correa et al., 2013; Çakir et al., 2014). The physalins are anti-inflammatory, anti-allergic and anti-cancer (Puente et al., 2011; Zheng et al., 2012).

The propagation occurs through seeds, cuttings and micropropagation (Ianckievicz et al., 2013; Muniz et al., 2014). Seeds are more used due to satisfactory germination and the high amount of seeds (100 to 200) (Puente et al., 2011).

High quality seeds are essential for seedling production and the consequent establishment of the production system. However, information concerning the factors that may affect the physiological potential of seeds are scarce. Physalis seeds are very small, which may reduce sowing efficiency. A viable alternative to increase efficiency is to use coating polymers by film-coating. In the film-coating process, active material is allocated to the seeds without causing changes in shape and size (Lagoa et al., 2012). That process provides greater fluidity and efficiency in sowing, enables distinguishing high value seeds (because of the dyes used), scares off birds, rodents and insects and reduces dust, providing better security for operators and reducing seed injuries caused by herbicides (Avelar et al., 2012). However, this coating technology must be adapted to each species due to possible problems regarding germination (Melo et al., 2015), e.g., a decrease in water and gas availability as a result of the formation of physical barriers on the tegument. Thus, the goal of this study was to determine the effects of fruit cooling and of seed film coating the germination potential of physalis.
2. Materials and methods
The experimental design was completely randomized in a 2x3 factorial (fruit storage conditions x seed film coating) with five replications and one hundred seeds per plot. Freshly picked physalis fruits that had brownish yellow calyx were used (Rodrigues et al., 2012). After calyx extraction, twenty fruits were wrapped in plastic bags and stored for seven days under two conditions: room (average temperature of 25 °C) and cooling conditions (average temperature of 10 °C).

After storage, the seeds were extracted from the fruit through friction in a hand seive, washing under running water and subsequent drying. The hydrophilic polymer coatings Blue AG L-204 DISCO® and Red AG L-203 DISCO® were used to carry out seed film coating, and water was used as witness. A total of 4.5 mL of polymer was diluted into 10 mL of water. The polymer was adhered to the seeds by stirring (Countertop Orbital Shaker, NT 145) in a glass container (100 mL), for 5 minutes at 60 rpm. Then, the seeds were dried on filter paper for 24 hours at 22 °C.

The germination test was carried out in the paper substrate, specifically, between paper. The substrate was moistened with distilled water equivalent to 2.5 times its dry weight. The rolls of paper were kept in a B.O.D incubator at 25 °C, with a 12 hour photoperiod. Evaluations consisted in identifying sprouted seeds (radicle emission) seven, 14 and 21 days after sowing. Results are shown in percentage. The germination rate index was calculated following Maguire (1962).

The F Test was used to determine significance of the treatment effects. The means of the factors “fruit storage conditions” and “coating polymers” were compared using the Tukey test (p < 0.05).

There was no interaction among the factors (fruit storage conditions x coating polymers) for any of the evaluated variables (Table 1). Therefore, the variables were analyzed considering the means of each factor.

3. Results and discussion
Fruit storage at different temperatures did not affect the germination viability of physalis (Table 1). Maintaining seeds within the fruit prevents desiccation, and seed longevity depends mainly on the moisture content and storage environmental conditions. Most species exhibit a better conservation of the physiological potential of the seeds in low temperatures. However, Passiflora setacea seeds (Pádua et al., 2011) stored at 4 °C temperatures undergo dormancy induction. Therefore, an expansion in studies is recommended to assess the effect of temperature and humidity in physalis seed storage.

In a study to determine physalis harvesting point, Rodrigues et al. (2012) found that fruits with brownish yellow calyx have a high content of soluble solids. This characterization was performed with the whole fruit, i.e., considering the epicarp, mesocarp and endocarp with seeds. The seeds represent the largest part of the total fruit weight. Therefore, such phenotypic characteristics related to maximizing germination and the high soluble solids contents make the fruit maturation stage the most appropriate to extract seeds to produce seedlings.

Synthetic polymer coating provided an increase in the percentage and speed of physalis seed germination (Table 1), which occurred possibly because it regulates the soaking speed and reduces the consequent damage. The increased germination performance due to the film coating is also reported for of field crop seeds (soybeans, Marandu grass) (Custódio et al., 2011; Gesch et al., 2012).

In addition, during soaking no disintegration of the coating material was observed. Such disintegration could lead to the formation of a dough without resistance, would limit the passage of oxygen and moisture to the embryo (Sampaio and Sampaio, 2009). This is a positive result once it shows the potential of film coating in enhancing germination conditions, as a finishing technique and for pesticides adherence to seeds.
4. Conclusion

The cold storage of physalis fruit for seven days does not affect seed germination viability. The seed coating increases the germination percentage and speed. This information promotes propagation and consequent production of physalis due to a practical option of conservation of seeds, via maintenance within fruits, and possibility of coating treatments such as potentiation factor of physiological seed viability.
5. References
Avelar, S. A. G.; Sousa, F. V.; Fiss, G.; Baudet, L.; Peske, S. T. 2012. The use of film coating on treated corn seed performance. Revista Brasileira de Sementes 34: 186-192.         [ Links ]

Bravo, K.; Sepulveda-Ortega, S.; Lara-Guzman, O.; Navas-Arboleda, A.A.; Osorio, E. 2014. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal Science Food Agriculture 95: 1562-1569.         [ Links ]

Çakir, O.; Pekmek, M.; Çepni, E.; Candar, B.; Fídan, K. 2014. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2-genes in HeLa cells. Food Science and Technology 34: 422-430.         [ Links ]

Correa, R.F.P.; Rodríguez, M.C.; González, J.H.G. 2013. Estabilidad fisicoquímica y funcional de uchuva (Physalis peruviana l.) impregnada a vacío con calcio y vitaminas B9, d y e, durante el almacenamiento refrigerado. Revista Facultad Nacional de Agronomía 66: 6929-6938.         [ Links ]

Custódio, C.C.; Ambiel, A.C.; Rodrigues, D.Z.; Agostini, E.A.T.; Factur, V.D.; Pavanelli, L.E. 2011. Peliculização de sementes intactas e escarificadas de Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. Pesquisa Agropecuária Tropical 41: 314-321.         [ Links ]

Erkaya, T.; Dagdemir, E.; Sengul, M. 2012. Influence of cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food research International 45: 331-335.         [ Links ]

Ianckievicz, A.; Takahashi, H.W.; Fregonezi, G.A. de F.; Rodini, F. K. 2013. Produção e desenvolvimento da cultura de Physalis L. submetida a diferentes níveis de condutividade elétrica da solução nutritiva. Ciência Rural 43: 438-444.         [ Links ]  

Gesch, R.W.; Archer, D.W.; Spokas, K. 2012. Can using polymer-coated seed reduce the risk of poor soybean emergence in no-tillage soil? Field Crops Research 125: 109-116.         [ Links ]

Lagôa, A. de O.; Ferreira, A.C.; Vieira, R.D. 2012. Plantability and moisture content of naked and pelleted seeds of supersweet (Sh2) corn during cold storage conditions. Revista Brasileira de Sementes 34: 39-46.         [ Links ]

Lima, C.S.M.; Galarça, S.P.; Betemps, D.L.; Rufato, A.R.; Rufato, L. 2012. Avaliação física, química e fitoquímica de frutos de Physalis, ao longo do período de colheita. Revista Brasileira de Fruticultura 34: 1004-1012.         [ Links ]

Maguire, J.D. 1962. Speeds of germination-aid selection and evaluation for seedling emergence and vigor. Crop Science 2: 176-177.         [ Links ]

Melo, A.P.C.; Seleguini, A.; Veloso, V.R.S.; Pereira, J.M. 2015. Recobrimento de sementes de tomate com concentrações crescentes de polímero sintético. Ciência Rural 45: 958-963.         [ Links ]

Muniz, J.; Kretzchmar, A.A.; Rufato, L.; Pelliza, T.R.; Rufato, A.R.; Macedo, T.A. 2014. General aspects of physalis cultivation. Ciência Rural 44: 964-970.         [ Links ]

Namiesnik, J.; Vearasilp, K.; Kupska, M.; Ham, K.S.; Kang, S.G.; Park, Y.K.; Barasch, D.; Nemirovski, A.; Gorinstein, S. 2013. Antioxidant activities and bioactive components in some berries. European Food Research Technology 237: 819-829.         [ Links ]

Pádua, J.G.; Schwingel, L.C.; Mundim, R.C.; Salomão, A.N.; Roverijosé, S.C.B. 2011. Germinação de sementes de Passiflora setacea e dormência induzida pelo armazenamento. Revista Brasileira de Sementes 33: 80 - 85.         [ Links ]

Puente, L. Pinto-Muñoz, C.A.; Castro, E.S.; Cortes, M. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International 44: 1733-1740.         [ Links ]

Rodrigues, F.A.; Penoni, E.S.; Soares, J.D.R.; Pasqual, M. 2012. Caracterização do ponto de colheita de Physalis peruviana L. na região de Lavras, MG. Bioscience Journal 28: 862-867.         [ Links ]

Rop, O.; Micek, J.; Jurikova, T.; Valsikova, M. 2012. Bioactive content and antioxidant capacity of Cape gooseberry fruit. Central European Journal of Biology 7: 672-679.         [ Links ]

Rutz, J.K.; Voss, G.B.; Jacques, A.C.; Pertuzatti, P.B.; Barcia, M.T.; Zambiazi, R.C. 2012. Geleia de Physalis peruviana L.: Caracterização bioativa, antioxidante e sensorial. Alimentos e Nutrição 23: 369-375.         [ Links ]

Sampaio, T.G.; Sampaio, N.V. 2009. Recobrimento de sementes de hortaliças. In: Nascimento, W. M. Tecnologia de sementes de hortaliças. Embrapa Hortaliças, Brasil.         [ Links ]

Valdenegro, M.; Fuentes, L.; Herrera, R.; Moya-León, M.A. 2012. Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methycyclopropene treatment. Postharvest Biology and Technology 67: 110-117.         [ Links ]

Yildirim, E.; Karlidag, H.; Dursun, A. 2011. Salt tolerance of Physalis during germination and seedling growth. Pakistan Journal of Botany 43: 2673-2676.         [ Links ]

Zheng, Y.; Luan, L.; Chen, Y.; Ren, Y.; Wu, Yongjiang. 2012. Characterization of physalins and fingerprint analysis for the quality evaluation of Physalis alkekengi L. var. franchetii by ultra-performance liquid chromatography combined with diode array detection and electrospray ionization tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 71: 54-62.         [ Links ]

 * Autor para correspondência

E-mail: (A. Campos de Melo).

25 junio 2015
Aceptado 23 noviembre 2015