SciELO - Scientific Electronic Library Online

 
vol.23 número1Modelos cinéticos sigmoidales aplicados al crecimiento de Saccharomyces boulardii índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista de Investigaciones Altoandinas

versión On-line ISSN 2313-2957

Rev. investig. Altoandin. vol.23 no.1 Puno ene-mar 2021

http://dx.doi.org/10.18271/ria.2021.226 

Artículo Breve

Response of parsley to different population densities of Meloidogyne arenaria

Respuesta del perejil crespo a diferentes densidades de población de Meloidogyne arenaria

Leslie Sharon Lozada-Villanueva1 
http://orcid.org/0000-0002-6084-8092

Teodocia Gloria Casa-Ruiz1 
http://orcid.org/0000-0001-9094-3800

Cristiano Bellé1  2  * 
http://orcid.org/0000-0003-2247-3207

1 Universidad Nacional de San Agustín de Arequipa, Calle Universidad s/n, Arequipa, Perú.

2 Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, Rio Grande do Sul, Brasil.

Abstract

The effect of initial population density (Pi) of the peanut root-knot nematode, Melodoigyne arenaria, on curly leaf parsley growth was assessed in this study. The population densities of M. arenaria ranged from 0 to 64 eggs + second-stage juveniles (J2)/cm3 soil in sterile sandbags. The root gall index (RGI), reproduction factor (RF), fresh leaf weight (FLW), dry leaf weight (DLW), root fresh weight (RFW), root length (RL), leaf height (LH), and chlorophyll index (SPAD) were determined at 90 days after inoculation. FLW, DLW, RFW, LH, and SPAD data were fitted to the Seinhorst equation, y = m + (1 - m) zPi-T, to determine the tolerance limit T = 0.25 eggs +J2/cm3 soil for FLW, DLW, RFW, and LH, with relative means (m) of 0.52, 0.24, 0.22, and 0.4 respectively; conversely, the T value for SPAD was 0.125 eggs + J2/cm3 soil and with a m of 0.26. All biometric variables decreased with an increase in the initial population density (Pi). Nevertheless, the highest RF of M. arenaria in parsley was 78.92 for a Pi = 8 eggs + J2/cm3 soil, with an RGI value of 5 from Pi = 1 eggs + J2/cm3. Curly leaf parsley growth decreased with an increase in Pi of M. arenaria.

Key words: Tolerance limit; peanut root-knot nematode; Petroselinum crispum, growth reduction

Resumen

Se realizó él estudió del efecto de poblaciones crecientes (Pi) del nematodo de la agalla Melodoigyne arenaria en el cultivo de perejil crespo, que oscilaron entre 0 y 64 huevos + juveniles del segundo estadio (J2) /cm3 de suelo en bolsas com suelo estéril. A los 90 días después de la inoculación, se determinó, índice de agallamiento (IA), factor de reproducción (FR), peso fresco follaje (PFF), peso seco follaje (PSF), peso fresco raíz (PFR), longitud de raíz (LR) altura foliar (AF) e índice de clorofila (SPAD). Los datos de PFF, PSF, PFR, AF y SPAD se sometieron a la ecuación de Seinhorst, y = m+(1-m) zPi-T, que permitió determinar el límite de tolerancia T = 0.25 huevos +J2/cm3 de suelo para PFF, PSF, PFR y AF, con promedios relativos (m) de 0.52; 0.24; 0.22 y 0.4 respectivamente; por otro lado, el valor de T para SPAD fue de 0.125 huevos+J2/cm3 de suelo y con un m de 0.26. Todas las variables biométricas decrecen al incremento de las poblaciones iniciales (Pi). Asimismo, el mayor FR de M. arenaria en perejil es 78.92 para la Pi = 8 huevos +J2/cm3 de suelo, con un valor de IA de 5 a partir de Pi = 1 huevos+J2/cm3. Conforme se incrementa las Pi de M. arenaria el cultivo de perejil crespo reduce su crecimiento.

Palabras clave: Limite de tolerancia; nematodo de la agalla; Petroselinum crispum; reducción de crecimiento

Introduction

In Peru, curly leaf parsley (Petroselinum crispum (Mill.)) growth has gained socioeconomic and environmental relevance for its ability to generate jobs and value added. For these reasons, the factors that can significantly reduce curly leaf parsley growth must be investigated. One of the main problems of this crop is the occurrence of diseases caused by viruses, fungi, bacteria, and nematodes (Hallmann y Meressa, 2018; Lana y Moita, 2018).

The main nematode species associated with curly leaf parsley are: Ditylenchus dipsaci (Kuhn) Filipjev, Belonolaimus gracilis Steiner, Dolichodorus heterocephalus Cobb, Paratylenchus hamatus Thorne y Allen, and Pratylenchus penetrans (Cobb) Filipjev y Schuurmans Stekhoven (Hallmann y Meressa 2018). In addition, economically important species of the genus Meloidogyne spp. include M. arenaria (Neal) Chitwood, M. enterolobii Uang y Eisenback, M. floridensis Chitwood, Hannon y Esser, M. incognita (Kofoid y White) Chitwood, M. hapla Chitwood, M. hispanica Hirschmann, and M. javanica (Treub) Chitwood (Mennan et al., 2011; Maleita et al., 2012; Barros et al., 2018; Hallmann y Meressa, 2018). Plants infected by these Meloidogyne species show symptoms related to generalized decay, leaf yellowing, reduced shoot growth, reduction of the root system, and presence of root galls (Mennan et al., 2011; Sangronis et al., 2014; Sasanelli et al., 2015; Hallmann y Meressa, 2018; Ntalli et al., 2019), and M. arenaria has also been reported to cause economic damages in P. crispum ‘Bezirci’, in Turkey (Mennan et al., 2011).

The data on M. arenaria in curly leaf parsley growth in the Arequipa region remains limited, but farmers have reported damages caused by Meloidogyne spp. For this reason, the present study was conducted to assess the effect of M. arenaria populations on plant growth and to estimate the tolerance level.

Materials and methods

The experiment was conducted, November 2019 to January 2020, in a shade house at temperatures of 25 ± 5° C and relative humidity of 40% ± 5%, and nematode analyses were performed at the Plant Pathology laboratory of the National University of San Agustín (Universidad Nacional de San Agustín - UNSA), Arequipa, Peru.

Curly leaf parsley ‘Moss Curled’ seeds were sown in propagation trays with sterile substrate (Promix®) and transplanted when the seedlings had three true leaves in 1,000 cm3 fine sterilized sandbags. The inoculum used in this study was identified as the species M. arenaria (Est. A2) based on the female perineal pattern (Taylor y Netscher, 1974) and biochemical characterization by esterase isoenzyme electrophoresis (Carneiro y Almeida 2001). Subsequently, they were multiplied in tomato cultivar ‘Rio Grande’ seedlings grown in a plastic shade house.

The method described by Hussey and Barker (1973) was used for inoculation, applying the following inoculum levels: 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, eggs + second-stage juveniles (J2)/cm3 soil (Table 1). For inoculation, three holes were made in the ground near the base of the stem. Tomato plants (Solanum lycopersicum var. ‘Rio Grande’) were used to assess the viability of the inoculum. The plants were inoculated with 5,000 eggs + J2distributed in three holes around the plant.

At 90 days, root gall index (RGI), reproduction factor (RF=final population/initial population), fresh leaf weight (FLW), dry leaf weight (DLW), root fresh weight (RFW), root length (RL) leaf height (LH) and chlorophyll index (SPAD), determined using the Minolta SPAD 502 (Minolta, Osaka, Japan) chlorophyll meter, were evaluated. FLW, DLW, RFW, LH and SPAD were fitted to the Seinhorst equation (1965), y = m+ (1-m) zPi-T. Eggs +J2 were extracted using the technique proposed by Hussey and Barker (1983). The root gall index was determined according to the methodology proposed by Taylor and Sasser (1978), where 0 = no galls, 1 = 1 to 2, 2 = 3 to 10, 3 = 11 to 30, 4 = 31 to 100 and 5 = more than 100 galls per root system. The RF was determined according to the method proposed by Oostenbrink (1996), they were considered immune (RF = 0), resistant (RF <1) and susceptible (RF> 1) species. Biometric variables were analyzed using the software SAS version 9.0.

Results

The symptoms observed in curly leaf parsley in this study, such as reduced growth, generalized decay, leaf yellowing, and reduction of the root system, are related to the presence of root galls (Table 1; Figures 1, 2 and 3).

The relationship between final population and plant growth (indicated by FLW, DLW, RFW, LH, and SPAD) was determined by fitting the data to the Seinhorst model, demonstrating good interpolation, thereby facilitating determination of the tolerance limit (T) of M. arenaria and the maximum loss of the measured variables (m), and establishing, in an appropriate way, the relationship between the initial populations of the nematode in the soil and the agronomic parameter considered (Figures 1, 2 and 3).

Table 1 Effect of the initial population density of M. arenaria on the root gall index (RGI) and reproduction factor (RF) in curly leaf parsley. 

PiU D/PV RGIW RFX
0 0 0 d 0.0 e
0.065 65 3 c 50.8 a
0.125 125 3 c 45.1 a
0.25 250 4 b 37.9 b
0.5 500 4 b 33.3 b
1 1000 5 a 31.2 b
2 2000 5 a 25.2 c
4 4000 5 a 18.2 c
8 8000 5 a 17.6 c
16 16000 5 a 15.1 c
32 32000 5 a 8.4 d
64 64000 5 a 5.2 d
C.V.Z 27.72 25.17

UPi= Initial population

VD/P= Population density by plant

WRGI= Root gall index according to the scale by Taylor and Sasser, (1983)

XRF= Reproduction factor (RF= final population/ initial population).

ZCoefficient of variation

Figure 1 Relationship between plant height (A), fresh leaf weight (B) and initial population (Pi) of Meloidogyne arenaria in curly leaf parsley. 

Figure 2 Relationship between dry leaf weigth (A), root fresh weight (B) and initial population (Pi) of Meloidogyne arenaria in curly leaf parsley 

Figure 3 Relationship between chlorophyll Index and initial population (Pi) of Meloidogyne arenaria in curly leaf parsley 

Discussion

The T value for LH, FLW, DLW, and RFW was estimated at 0.25 eggs + J2/cm3 soil, while the m value was 0.518, 0.246, 0.220, and 0.398 respectively; therefore, from Pi ≥ 64 eggs + J2/cm3 soil, the biometric evaluations 90 days after inoculation showed 49.14%, 76.14%, 78.68%, and 61.14% reductions, respectively (Figures 1 and 2).

The T value for SPAD was 0.125 eggs + J2/cm3 soil, and the value of m was 0.265, decreasing to 74% (Figure 3); these values indicate that the damage increases with the increase in population density, and therefore the damage to crop growth increases as a result of increased reproduction (Sangronis et al., 2014; Mennan et al., 2011; Silva et al., 2020 ).

For the RF, the Pi levels < 16 eggs +J2/cm3 soil showed the highest multiplication rates with RF values = 15.1-50.8; this could be attributed to the fact that the nematodes are exposed to decreased intraspecific competition in the rhizosphere of the plant and thereby to increased food availability (Aguirre et al., 2002; Crozzoli et al., 2012; Crozzoli et al., 2013; Sangronis et al., 2014). The highest RF was measured at Pi = 8 eggs + J2/cm3 soil, which caused reduced crop growth. In turn, the RF decreased from Pi ≥ 16 eggs +J2/cm3 soil due to limited food and space (Perichi et al., 2019).

Root damage due to gall formation induced by M. arenaria, determined as the RGI according to the scale by Taylor and Sasser (1983), ranged from 3 to 5; as such, RGI = 3 for 0.065 Pi and 0.125 eggs + J2/cm3 soil, RGI = 4 for 0.25 Pi and 0.5 + J2/cm3 soil e RGI = 5 para Pi ≥ 1 eggs + J2/cm3 soil, corroborating the results reported by Sangronis et al., (2014). Similarly, high nematode Pi may deteriorate infection sites and generate metabolic waste accumulation, which would affect crop root development, as indicated by Ferris (1985).

The biometric variables of parsley such as LH, FLW, DLW, RL, and SPAD (Figure 1,2,3) vary similar to the growth variables, decreasing with the increase in Piroot infection with Meloidogyne spp. markedly affecting plant physiology, especially the photosynthetic rate and nutrient uptake, and therefore its normal growth and development (Niño et al., 2008; Moosavi 2015). Fresh leaf and root weight tended to decrease with the increase in initial population density, corroborating Niño et al., (2008). Similarly, Aguirre et al., (2002) and Salazar et al. (2013) report height reductions at higher population densities of Meloidogyne spp.

The findings of this study confirm that M. arenaria adversely affects curly leaf parsley ‘Moss curled’ growth, showing a very low T of 0.125 eggs + J2/cm3 soil and high DLW reductions, reaching 78.68%; therefore, owing to its high reproduction rate, M. arenaria should not be used in crop rotation because it would maintain and/or increase its populations.

Conclusions

With the determination of lost income that has shown the need to reduce M. arenaria populations by tolerance level before it seems at least to reduce poblaciones at a level that does not cause economic damage.

Acknowledgements

The authors appreciate the financing of this research paper to the National University of San Agustín de Arequipa, Peru, Grant Contract N° TP- 20-019 - UNSA, Research Work to Opt Professional Title

Bibliographic references

Aguirre, Y., Crozzoli, R., & Greco, N. (2002). Efecto del nematodo agallador Meloidogyne incognita sobre el crecimiento de remolacha (Beta vulgaris). Fitopatología Venezolana, 15: 13-16. [ Links ]

Barros, A. F., Campos, V. P., Souza, L. N., Costa, S. S., Terra, W.C., & Lessa, J.H.L. (2018). Morphological, enzymatic and molecular characterization of root-knot nematodes parasitizing vegetable crops. Horticultura Brasileira, 36, 473-479. https://doi.org/10.1590/s0102-053620180408 [ Links ]

Carneiro, R.G., & Almeida, M.R.A. (2001). Técnica de eletroforese usada no estudo de enzimas dos nematoides das galhas para identificação de espécies. Nematologia Brasileira, 25:35-44. https://nematologia.com.br/files/revnb/35_12.pdfLinks ]

Crozzoli, R., Aguirre, Y., & Ángel, L. (2012). Patogenicidad del nematodo agallador, Meloidogyne enterolobii, en lulo (Solanum quitoense) en macetas. Nematologia Mediterranea, 40:153-156. https://journals.flvc.org/nemamedi/article/view/87097Links ]

Crozzoli, R., Aguirre, Y., & Ángel, L. (2013). Efecto de diferentes densidades poblacionales de Meloidogyne enterolobii enel crecimiento de maíz (Zea mays l.) en maceteros. Fitopatología Venezolana, 26:25-28 [ Links ]

Ferris H. (1985). Density-dependent nematode seasonal multiplication rates and overwinter survivorship: A critical point model. Journal of Nematology, 17: 93-100. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2618438/Links ]

Hallmann, J & Meressa, B. H. (2018). Nematodes parasites of vegetables. In Sikora, R. A, Coyne, D., Hallmann, J., Timper, P. (eds.) Plant parasitic nematodes. CAB International, Wallingford, UK. [ Links ]

Hussey, R.S., & Barker, K. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 57: 1025-1028 [ Links ]

Lana, M.M, & Moita, A. W. (2019). Visual quality and waste of fresh vegetables and herbs in a typical retail market in Brazil. Horticultura Brasileira, 37, 161-171 .https://dx.doi.org/10.1590/s0102-053620190206 [ Links ]

Maleita, M., Hazelmann, R., Curtis., C, Powers, T.O., & Abrantes, I. (2012). Host status of cultivated plants to Meloidogyne hispanica. European Journal of Plant Pathology, 133:449-460. https://doi.org/10.1007/s10658-011-9918-8 [ Links ]

Martínez, R., Crozzoli, R., & Aguirre, Y. (2014). Patogenicidad del nematodo agallador, Meloidogyne enterolobii, en albahaca (Ocimum basilicum L.) en macetas. Revista de la Facultad de Agronomía, 31: 558-575. [ Links ]

Mennan, S., Aydinli, G., & Kati, T. (2011). First report of root-knot nematode (Meloidogyne arenaria) infecting parsley in turkey. Journal of Phytopathology, 15: 694-696. https://doi.org/10.1111/j.1439-0434.2011.01820.x [ Links ]

Moosavi, M. R. (2015). Damage of the root-knot nematode Meloidogyne javanica to bell pepper, Capsicum annuum. Journal of Plant Diseases and Protection, 122:244-249. https://doi.org/10.1007/BF03356559 [ Links ]

Niño, N., Arbeláez, G,, Navarro, R. (2008). Efecto de diferentes densidades poblacionales de Meloidogyne hapla sobre uchuva (Physalis peruviana L.) en invernadero. Agronomía Colombiana, 26:58-67. https://revistas.unal.edu.co/index.php/agrocol/article/view/13917/14632Links ]

Ntalli, N., Zioga, D., Argyropoulou, D.M., Papatheodorou, M.E., Menkissoglu-Spiroudi, U,, Monokrousos, N. (2019). Anise, parsley and rocket as nematicidal soil amendments and their impact on non-target soil organisms. Applied Soil Ecology 143:17-25. https://doi.org/10.1016/j.apsoil.2019.05.024 [ Links ]

Oostenbrick, M. (1966). Major characteristics of the relation between nematodes and plants. Mendelingen Landbouwhogeschool Wageningen, 6:1- 46. https://www.cabdirect.org/cabdirect/abstract/19670801714Links ]

Perichi, G., Aguirre, Y., Vegas, A., & Jáuregui, D. (2019). Patogenicidad del nematodo Meloidogyne incognita en plantas de pimentón cv. Río tocuyo. Bioagro 31: 67-72. [ Links ]

Salazar-Antón, W., Guzmán-Hernández, T.J. (2013). Nematodos fitoparásitos asociados al tomate en la zona occidental de Nicaragua. Agronomía Mesoamericana 24(1):27- 36. https://doi.org/10.15517/am.v24i1.9638 [ Links ]

Sangronis, E., Crozzoli, R., Aguirre, Y. (2014). Efecto de densidades poblacionales de Meloidogyne enterolobii en el crecimiento de perejil (Petroselinum sativum L.) en maceteros. Nematropica, 44: 1-6. https://journals.flvc.org/nematropica/article/view/83310Links ]

Sasanelli, N., Vovlas, N., Cantalapiedra-Navarrete, C., Lucarelli, G., Palomares-Rius, J. E. & Castillo, P. (2015). Parasitism and pathogenicity of curly-leaf parsley with the root-knot nematode Meloidogyne javanica in Southern Italy. Helminthologia, 52: 348-354 https://doi.org/10.1515/helmin-2015-0055 [ Links ]

Seinhorst, J. (1965). The relation between nematode density and damage to plant. Nematologica, 11: 137-154. https://doi.org/10.1163/187529265X00582 [ Links ]

Silva, S. A., Bicalho, A. C.G., Santiago, D. C. , Cunha, L. S., Machado, A. C.Z. (2020). Assessment of the most suitable nematode inoculum density and plant growth period to screen coffee genotypes for their reaction to Meloidogyne incognita. Nematology, 22: 373-380. https://doi.org/10.1163/15685411-00003311 [ Links ]

Taylor, A.L. & Netscher, C. (1974) An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica 20: 268-269. https://doi.org/10.1163/187529274X00285 [ Links ]

Taylor, A., & Sasser, J. (1983). Biología, identificación y control de los nematodos de nódulo de la raíz (especies de Meloidogyne). Agencia de Estados Unidos para el Desarrollo Internacional. Raleigh, NC, USA. 111 p. [ Links ]

Received: July 18, 2020; Accepted: November 30, 2020

* Author for correspondence: crbelle@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License